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ABSTRACT

This dissertation presents a data assimilation method for estimating the phys-

ical drivers of the Earth’s ionosphere layer through the combination of Global Naviga-

tion Satellite System based (GNSS) ionospheric density measurements, Fabry-Perot

interferometer (FPI) neutral wind measurements and several empirical models. The

main contributions include 1) Kalman filtering for multi-observation ingestion and

multi-state estimation, 2) Ingestion of FPI neutral wind measurements, 3) Spherical

harmonic basis functions for global electric potential estimation and 4) a study of

storm-time ion drifts using globally ingested data.

The thermosphere is a region of Earth’s atmosphere (80-1000km) that con-

tains a balance of and solar ionizing radiation such that an ionosphere can form.

During geomagnetic storm events, the ionosphere can be disturbed causing abrupt

redistribution of the ionospheric plasma. These disruptions can cause blackouts for

radio wave and navigation systems. Understanding what causes the ionosphere to

change is therefore necessary as society becomes more dependent on navigation and

communication technologies.

The first step in understanding the ionosphere is to quantify its physical

drivers. Measurements of the ionosphere are limited both spatially and temporally

because the region is so vast. Models, on the other hand, provide our best under-

standing and capability to simulate the ionosphere and its drivers but often fall short

in capturing certain phenomena during severe geomagnetic storms. In this work,

a data assimilation algorithm called Estimating Model Parameters for Ionospheric

Reverse Engineering (EMPIRE) is further developed to combine both measurements

and simulation data sets for estimating ionospheric drivers globally. EMPIRE ingests

ionosphere plasma density rate measurements and subtracts model simulation results

to produce an observation of the difference between measurements and simulation.

xvii



EMPIRE then fits basis functions which represent physical drivers by estimating the

function’s coefficients. The mapping from observation to physical driver happens

using the ion continuity governing equation as a model.

The EMPIRE algorithm was originally developed in 2009 to do regional data

assimilation and used only plasma density measurements. In this work, EMPIRE is

modified to use a Kalman filter so measurements and models can be ingested in an

efficient and systematic manner. Then using the new Kalman filtering method, FPI

neutral wind measurements are ingested to provide direct information of an iono-

spheric driver. This thesis demonstrates the first ever use of FPIs and plasma density

measurements in a data assimilative environment. Next, EMPIRE is modified to esti-

mate coefficients to spherical harmonic basis functions rather than power series basis

functions. Spherical harmonic functions allow EMPIRE to provide global estimates

because they are continuous and orthogonal on a spherical domain (such as Earth).

A study is then conducted to ingest global plasma density rate measurements and

neutral winds to estimate ion drifts across the globe.

xviii
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CHAPTER 1

INTRODUCTION

Civilization today depends on technology that operates within the space en-

vironment. Since 1983 the Space Foundation has shown that the world is investing

in space technology at an increasing rate [6]. Infrastructure such as the International

Space Station [7], Global Navigation Satellite Systems (GNSS), and electrical power

grids which supply power to cities are just a few of the government and commer-

cial technologies which must be engineered to withstand space weather. The U.S.

government has recognized space weather as a national safety threat and formed the

Space Weather Operations, Research, and Mitigation (SWORM) Subcommittee of

the Committee on Environment, Natural Resources, and Sustainability (CENRS).

SWORM is responsible for coordinating between various federal agencies to meet the

goals laid out in the National Space Weather Action Plan (SWAP) and National

Space Weather Strategy (SWS) [8, 9]. These two documents outline the U.S. govern-

ment’s plan to understand and manage the risks associated with space weather. Goal

5 of that document highlights the need to be able to understand and forecast space

weather on which this dissertation focuses its efforts.

Space weather is dominated by our solar system’s star, the Sun. The Sun’s

output includes intermittent coronal mass ejections (CME) and flares which can dis-

turb space from the surface of the Sun to Earth and beyond. At the altitudes from

80 to 1000 km above Earth’s surface is a region called the ionosphere-thermosphere

(IT). This region of the near-Earth space environment is dominated by the combina-

tion of low density atmosphere, electromagnetic radiation, the solar wind and Earth’s

magnetic field. Low-Earth-orbit satellites occupy the IT region and therefore must

be designed to withstand temperatures, radiation and drag present there. Also, nat-
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ural and artificial signals can be reflected, attenuated or produced by the IT region,

thereby establishing design criteria for communication systems that interact with this

region. Particularly, with high precision applications such as GNSS, a knowledge of

the IT’s state is crucial. This dissertation makes contributions to both the capability

of estimating the IT state during geomagnetic storm-time, and to the understanding

of the natural processes that belong to the IT region.

1.1 Observing and Studying the Ionosphere-Thermosphere

Region

The IT region is vast and spans the entire globe making observations for model

validation and engineering decisions a challenge. Energy, mass and momentum are

transferred into and out of the IT region through its lower and upper boundaries.

The lower boundary (80km) is known as the top of the mesosphere and the upper

boundary (1000km) is the plasmasphere. The most common way of measuring the IT

region is with remote sensing methods (e.g., active and passive)[10, 11, 12] because in

situ measurements are very expensive due to the high altitude and coverage required.

This dissertation seeks to further enhance observability of the IT region by leveraging

data assimilation methods to make the most out of the measured data sets available.

The challenges with obtaining observables of the IT region creates a unique

demand for modelers and applied mathematicians to make the most of the data sets

that are available. Models of the IT region fall under two different categories, first

principle models and empirical techniques. First principle models define the govern-

ing equations of the IT region, numerical methods used to solve them, a grid, and

the boundary conditions. The solution is then propagated from the boundary con-

ditions throughout the entire IT region, making global simulations time-consuming

and resource- intensive. First principle models are, however, necessary demonstra-

tions of scientific understanding of the physics that govern a region as well as the
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numerical methods that allow the implementation of governing equation. Conversely,

empirical models define a set of basis functions which will be ‘fit’ to a data set us-

ing a minimization technique. Empirical models may contain basis functions which

can be solutions to the governing equations (i.e., spherical harmonics for electrostatic

potential), thereby more accurately representing the property of interest, or simply

be an easy-to-use series. The advantage here is that the solution need not be solved

at every location but rather the coefficients to a function which spans the space and

time. The disadvantage is that the empirical model’s solution is only as good as the

data to which it is being fit. With the IT region having sparse data sets, obtaining

enough high quality data can be challenging. This dissertation proposes a method

that combines first principle physics with empirical modeling to produce global data

sets for the first time.

Data assimilation techniques have been in development for the last few decades

but typically do not self-consistently estimate external drivers such as neutral winds,

electric fields, temperatures as well as the electron densities. Algorithms have been

developed with the goal to both image and forecast the Earth’s upper atmosphere

during geomagnetic storms (solar active, Sa) and quiet time (solar quiet, Sq). The

Utah State University (USU) has been developing the Global Assimilation of the

Ionospheric Measurements (USU-GAIM) model, the University of Southern Califor-

nia (USC) and the Jet Propulsion Laboratory (JPL) have been developing the Global

Assimilative Ionospheric Model (USC/JPL-GAIM) [13, and references therein]. These

algorithms assimilate measurements from instrumentation that provides plasma spec-

ification (i.e., density, composition and altitude), and they also assimilate climate

models that provide other physical drivers of the system. While these algorithms do

significantly improve the imaging of ionospheric plasma they fall short in capturing

the other IT states that are important for forecasting it. Estimating Model Parame-

ters from Ionospheric Reverse Engineering (EMPIRE) is an algorithm that focuses on
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improving storm time estimates of the physical drivers of the plasma and, by doing

so, provides important next steps toward a forecastable IT system.

Previously, EMPIRE was derived using a weighted least squares solution with

the weighting based on the square distance and the maximum values [14]. Modeling

errors, grid interpolation errors and numerical differencing errors were reduced by

adding the maximum value weights. Later, a singular value decomposition step was

added and the weighting matrix instead based on covariances specified by IDA4D

[15]. Prior to this work, EMPIRE was then modified to take in high resolution

electron density specification from IDA4D to study high density gradients [16]. While

EMPIRE did use covariances in its estimates, it left each time step very different

from the next and left the solutions without the ability to propagate error through

the estimate. A way to solve this is the use of Kalman filtering methods (see Section

2.2.1) and is one key motivation of my doctoral dissertation.

This dissertation describes the continued development of the EMPIRE algo-

rithm for improved geomagnetic storm-time state estimation of physical drivers of

Earth’s IT region. The EMPIRE algorithm falls under a category of data assimi-

lation algorithms that combines climate models with instrument measurements. In

order to blend the model outputs (aka simulation results) and measurements, the

EMPIRE algorithm uses the ion continuity equation as the governing equation. The

ion continuity equation is a model of the drivers which determine the rate of ion-

ization of the atmosphere between 80-1000km. The rate of change of ionization is

represented by the change in the number density of electrons, which is modeled as

having two distinct terms: source terms and divergence terms. Source terms describe

a rate of change occurring at a location due to creation or loss of the substance (e.g.,

plasma). In the case of the ionosphere, source terms can be recombination (a nega-

tive density change) or photoionization (a positive density change) due to the Sun’s
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electromagnetic radiation. The second part of the ion continuity equation is the di-

vergence term that drives the rate of change of density due to flow into and out of a

region. A velocity field describing flow in and out of a region is a 3-D vector field. If

the coordinate system is chosen to be aligned with a magnetic field, plasma motion

perpendicular to the field is dominated by the electric and magnetic field, and motion

parallel to the magnetic field is driven by collisional drag, gravity and diffusion. With

the ion continuity equation it is possible to relate observable measurement of one pa-

rameter of the ion continuity equation to another parameter such as the the electric

field or electric potential. More details on the physics within the ionosphere and the

ion continuity equation will be described in Sections 2.1.2 to 2.1.3. EMPIRE accom-

plishes storm-time estimation by prescribing a basis function to a given parameter

and rather than estimating the parameter directly at a given location, it estimates a

basis function that described that parameter over all space. All of these methods are

necessary to be able to make the best possible use of a limited dataset to study the

IT region of Earth’s near space environment. Details on the the EMPIRE algorithm

will be described in Section 2.2.2.

1.2 Contributions

This dissertation demonstrates the use of an algorithm for assimilating mea-

surements and models for studying the Ionosphere-Thermosphere (IT) region of Earth.

Particularly, the algorithm makes use of Global Navigation Satellite System (GNSS)

ionospheric plasma density measurements and Fabry-Perot interferometer measure-

ments for updating background models of the IT region. Chapter 2 contains two

background sections that will introduce the material necessary to understand the con-

tributions this dissertation provides. The first Section 2.1 introduces the ionosphere-

thermosphere by defining both of them and describing physics present in each ‘sphere’

(Subsections 2.1.2 and 2.1.1, respectively), and how the two are coupled (Subsection
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2.1.3). The second background section, Section 2.2, describes what is meant by data

assimilation in the context of this work, Subsection 2.1.2 introduces basic Kalman

filter theory and the final subsection, 2.2.2, describes the philosophy behind the EM-

PIRE algorithm. There are a total of four contributions that are described in the

subsequent Chapters:

1.2.1 Kalman Filtering for Regional IT Storm-Time Estimation. Chapter

3 describes how a Kalman filter was adapted for use within the EMPIRE algorithm.

All relevant components to a Kalman filter are established in background subsection

2.1.2 and then adapted for the EMPIRE assimilative environment in this chapter.

1.2.2 Inclusion of Fabry-Perot Interferometer Neutral Wind Observations.

Chapter 4 augments the EMPIRE algorithm for ingestion of thermospheric neutral

wind measurements. A study showing the effects that these measurements have on

IT state estimation using the Kalman filter derived in Chapter 3 is conducted for

the 24 October 2011 geomagnetic storm. The analysis region is the south western

United States. Results show the successful assimilation of both ionospheric and ther-

mospheric data sets for studying a geomagnetic storm, as well as the identification of

a physical phenomenon present in neutral wind thermospheric signals.

1.2.3 Global Storm-Time Electric Potential State Estimation. Chapter 5

modifies the EMPIRE algorithm for use with spherical harmonic basis functions for

global state estimation of the IT region’s electric potential. It describes how spherical

harmonic basis functions must be modified to fit to electric potential states and the

ion continuity equation

1.2.4 Application of Global Electric Potential State Estimation for the

March, 17th 2015 St. Patrick’s Day Geomagnetic Storm. This contribution

builds from the work done in contribution three and applies it to study the 17 March
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2015 St. Patrick’s Day geomagnetic storm. This geomagnetic storm is one of the

most well studied recent geomagnetic storms, making it useful to understand how

well GNSS plasma density measurements can be used to estimate global ion drifts.

In this chapter I present the EMPIRE configuration used to generate results for this

geomagnetic storm and compare the results to ISR data provided in literature.
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CHAPTER 2

TECHNICAL BACKGROUND

2.1 The Ionosphere and Thermosphere

The Earth’s atmosphere is divided into layers that are defined by a unique fea-

ture or set of features specific to each layer. The Earth’s atmosphere layers include

the troposphere (0 to 12km), stratosphere (12 to 50 km), mesosphere (50 to 80 km),

thermosphere (80 to 600 km) and lastly the exosphere (700 to 10,000 km).The region

this study focuses on is the thermosphere, which is characterized by its sharp rise in

temperature. More than 99% of the gas in this layer is ‘neutral’. The ionized compo-

nent is referred to as the ionosphere. These two different names (the thermosphere

and ionosphere) are used as if two layers exist, however, really the I-T layers occupy

the same space. The final defining feature of the thermosphere layer is its significant

composition and density change with altitude. Molecular oxygen (i.e., ‘O’) exists

almost exclusively within the thermosphere and is the dominant species at higher

altitudes. Atomic oxygen is a significant contributor to the state of the IT region.

2.1.1 The Thermosphere. The thermosphere is a fluid medium governed by

frequent collisions between individual particles of gas. When fluid density and scale

sizes are appropriate, a researcher may invoke the use of bulk fluid property governing

equations such as the Navier-Stokes equations, continuity and energy. In the terms of

the IT system and atmospheric science the validity of these equations are usable up

until the ‘exobase’, where the fluid approximation is not possible. Below the exobase

the distance traveled between collisions is short compared to the scale sizes of interest,

and above this the mean free path between collisions can exceed tens of kilometers

[17]. For Earth, the exobase is around 600 km. The altitudes between 80 km to 600
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Figure 2.1. A schematic drawing of the Earth’s magnetic field with the geomagnetic
north pole, spin axis and field lines labeled.

km constitute the last layer of Earth which may be considered a fluid and as such

many properties change along this distance.

Earth has an internally-generated magnetic field that interacts heavily with the

thermosphere. The Earth’s magnetic field may be simplified as a dipole with its axis

offset by approximately 11 degrees from Earth’s spin axis. It is created by currents

generated by the molten and electrically conducting interior of Earth. Figure 2.1

shows a few dipole field lines with arrows indicating the direction of Earth’s magnetic

field. It is useful to produce a geomagnetic grid that projects the Earth’s magnetic

field onto its geographic surface. This is accomplished by defining the magnetic

equator as the latitudinal zone at which the magnetic field lies in the plane of Earth’s

surface. The orientation of the magnetic field with the local horizontal is quantified

by the inclination angle (i.e., dip angle). At the magnetic equator the inclination

angle is zero and at the north pole it is -90 degrees. Convention states that north

of the magnetic equator the inclination angle is positive and south it is negative.

Modeling methods typically use geomagnetic field coordinates instead of geographic

because of the interaction between the Earth’s magnetic field and atmosphere.
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Figure 2.2. An FPI measuring the Doppler shifted emission emitted from the relax-
ation of a recombined O+

2 ion.

The day to day variability of the thermosphere is well known [18, 19]. Above

200 km, many measurement techniques exist that allow researchers to validate first

principle models or create empirical models that are fits to data. Below this altitude,

particularly from 120-200 km a lot is unknown due to lack of measurements [20]. For

the regions above 200 km the thermospheric winds are eastward during the night

(1600-0400 local time) and switch to westward during day (04-16) local time [20].

This zonal behavior is true for all latitudes on Earth. Conversely, the meridional

winds (i.e., north/southward) depend on latitude. The winds in the northern and

southern hemispheres will blow equatorward during the night and poleward during

the day. The relationship of the thermospheric winds to the geomagnetic equator

is a consequence of the interaction between the neutral and ionized portions of the

ionosphere-thermosphere system.

The thermosphere can be measured in several ways. One source is from Fabry-

Perot interferometry (FPI). This method is a passive radio technique which measures

the Doppler shift of recombination electromagnetic emissions being emitted by for-

merly ionized species [12]. Figure 2.2 shows a schematic diagram of an FPI instru-

ment. FPI instruments measure line-of-sight (LOS) winds only. In the case of this
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image, the FPI is located on the ground and looking up at a 45 degree angle. The

formerly ionized species emits energy in the form of light and is traveling at some un-

known velocity and direction. The signals received by the FPI are a Doppler shifted

signal specific to a given species. The most commonly measured signal is the 630

nm ‘red line’ recombination emission from ionized molecular oxygen, O+
2 . Once O+

2

encounters a free electron it relaxes after approximately 110 seconds and traveling

distances much greater than the mean-free-path of particles at these altitudes. 630

nm is an optical emission just below the 700 nm cut off in the visible range and

produces a red visible glow. Different species also emit different spectra.

Empirical models of thermospheric winds depend almost entirely on available

data. One such model is the Horizontal Wind Model 2014 (HWM14) which uses

ground-based FPI data but also incoherent scatter radar (ISR), satellite, and rocket

datasets [20].

2.1.2 The Ionosphere. The ionosphere is diffuse and permeates the entire thermo-

sphere from 80-600 km as well as extending into the exosphere 600-1000 km. Unlike

the thermosphere, the ionosphere is broken up into distinct layers based on altitude

(Figure 2.3). The climatology of the Ionosphere is well understood. Figure 2.3 shows

how the ionosphere grows during the day from photoionization of neutral species due

to extreme ultra-violet and X-rays and then, through recombination, shrinks at night.

As the ionizing photons enter into the atmosphere, the plasma density increases up

to a point where the balance between increasing neutral density and a reduction in

solar flux due to absorption. The ionosphere also varies with solar cycle. The Sun

undergoes a cycle where the net output of ionizing radiation peaks and weakens every

11 years. This effect is shown in Figure 2.3 with the dotted lines representing solar

minimum and the solid lines representing solar maximum. Without these atmospheric

layers, the ionizing radiation that reaches the ground would substantially increase.
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Figure 2.3. The layers of the ionosphere. Solid lines correspond to solar maximum
and dashed are for solar minimum. [1]

The evolution of the ionosphere can be mathematically modeled by using the

ion continuity equation:

dN

dt
= sP + sL︸ ︷︷ ︸

source terms

+ ~∇ · (N~v)︸ ︷︷ ︸
convective terms

(2.1)

Where N is the number density, t is the time, sP and sL are two source terms that

represent production and loss, and the convective term contains the divergence of ~∇

dotted with N and ~v (ion velocity). The production and loss terms to first order may

be represented by an atmosphere of only atomic oxygen (O) as this ionized species

primarily dominates the ionosphere. Higher order models typically begin to add in

more species. Convection is the transport of plasma throughout a region. Before

describing the convective term, it is necessary to discuss ion transport in the presence

of electric and magnetic fields.

When an ion encounters a magnetic field such as the Earth’s, depending on
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Figure 2.4. Ion drift due to electric and magnetic fields [2].

its charge, it will begin to gyrate in a circular motion as shown in Figure 2.4. If

a charged particle is in the presence of a magnetic and electric field (as is the case

with the ionosphere) then a particle will begin to drift. Equation (2.2) shows the

mathematical representation of charged particle drift (often called ‘E cross B’ drift).

~v⊥ =
~E × ~B

||~B||2
=
−~∇V × ~B

B2
(2.2)

where ~E is the electric field vector, ~B is the magnetic field vector, V is the electric

potential and ||~x|| is the norm operator. From here on B2 will simply refer to the

norm squared of ~B. The electric and magnetic fields are not the only drivers of ion

convection; the neutral wind also plays a very important role.

2.1.3 Ionosphere-Thermosphere Coupling. The ionized and neutral species

interact through collisions which is often called ion drag when discussed in a thermo-

sphere centered frame. As the neutrals move, the collisions with ions must be taken

into account and act to reduce the effect of other thermospheric drivers. The inverse

is also true if studying ion motion where, if neutral winds are accelerated by different
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drivers, then they can accelerate or decelerate the ions. This interaction is called the

neutral wind dynamo.

If the electric field were absent as a driver and there were only magnetic fields

and a mixed ionized and neutral atmosphere, then the motion would be governed

solely by a ratio of ion-neutral collisions to gyro frequency, ρ+. The motion of ions

due to neutral winds is described in Equation (2.3) [21].

~v =
1

1 + ρ2
+

[
ρ2

+~u+ ρ+~u× b̂+ (~u · b̂)b̂
]

(2.3)

Where ~v is the ion drift, ~u is the neutral wind and b̂ is the magnetic field direction.

At higher altitudes (F-region) where ρ+ << 1, the expression above simplifies to just

the last term and we have:

~v = (~u · b̂)b̂ (2.4)

This shows that the motion of ions is oriented with respect to the magnetic and

electric fields of Earth, and so it is common that to orient a coordinate system with

the magnetic field.

Not only do neutral winds drive motion along field lines, but also gravity

and diffusion play a role. Equation (2.1) can be rewritten now with all this new

information as:

dN

dt
= sP − sL︸ ︷︷ ︸

source terms

− ~∇ · (N~v⊥)︸ ︷︷ ︸
b̂⊥transport terms

− ~∇ · (N [~u+ ~vg + ~vD] · b̂)︸ ︷︷ ︸
b̂‖ transport terms

(2.5)

Where ~vg represents the gravity term and ~vD represents the diffusion term. Equation

2.5 is one of several governing equations of the ionosphere; others include the mag-

netohydrodynamic equations (i.e., modified Navier-Stokes). The interested reader

should consult resources such as [22, 1, 23].



15

Measuring the terms in Equation 2.5 can be accomplished using ground-based,

space-based or in situ measurements. One of the largest data sets available is pro-

vided by Global Navigation Satellite Systems (GNSS) for indirectly measuring the

electron density N . GNSS satellites, originally designed for navigation positioning,

transmit signals that penetrate the ionosphere from satellite to receiver. As the trans-

ionospheric signal passes through the ionized gas, it is slowed. The amount by which

the signal is slowed depends on the frequency of the signal because the ionosphere is

dispersive. Just as a prism can separate white light into different colors, the iono-

sphere delays different frequencies by different amounts. This dispersive property of

the ionosphere is what allows dual frequency measurements to measure the electron

density [1]. The total integrated electron density along a ray path is called the slant

total electron content (sTEC). Techniques for extracting the electron density N at

a given grid point from sTEC include Ionospheric Data Assimilation 4 Dimensional

(IDA4D) [24], the Utah State University Global Assimilation of Ionospheric Mea-

surements (USU GAIM) , the University of Southern California and Jet Propulsion

Laboratory Global Assimilative Ionospheric Model (USC-JPL GAIM). Each of these

algorithms is a class of data assimilation methods that combine model simulations

and measurement data sets to provide estimates of N on a 3 or 4 dimensional grid

(space and time). This dissertation makes use of the IDA4D method outputs of N to

produce estimates of dN/dt. For more techniques in measuring the ionospheric state,

please refer to [1].

2.2 Optimal Data Assimilation

The verb assimilate is defined by the Merriam-Webster Dictionary as, ‘to take

into the mind and thoroughly understand’ [25]. In data assimilation, the ‘mind’

is the model, the process of ‘taking in’ data is the algorithm, and ‘understanding’

is the subsequent output (or model adjustment, if that is the goal). For studying
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the ionosphere-thermosphere region, there are many ways to assimilate data. This

dissertation presents the use of Kalman filtering to estimate basis function coefficients

for interpolation or extrapolation between spatially distributed data.

Kalman filtering is a linear optimal estimator that seeks to minimize the mean-

squared error during inversion. Originally, a method was developed by N. Weimer’s

work in the 1940’s [26] and later redefined by R.E. Kalman in the 1960’s paper [27].

Other linear estimators exist for inversion (i.e., least-squares estimation) however,

when data is stochastic and includes mean and standard deviations, a Kalman filter

is very useful for reducing error in the final estimation. The next subsection describes

the components that make up a Kalman filter, and then the last subsection will

describe the EMPIRE algorithm.

2.2.1 Kalman Filtering Theory. For this section, I describe the terms used

in basic Kalman filters. The variables and symbols used here are the same symbols

present in the text book,“Introduction to Random Signals and Applied Kalman Fil-

tering” by R.G. Brown and P.Y.C. Hwang [28]. This section provides the minimum

components needed to describe a full Kalman filter.

A Kalman filter consists of a recursive dynamic model and a measurement

model. The dynamic model describes a dynamic process over time and the mea-

surement model is used to update a state estimate given observations at discrete

points in time. Equations (2.6) and (2.7) shown below are the dynamic model and

measurement , respectively:

xk+1 = Φkxk + wk (2.6)

zk = Hkxk + vk (2.7)

where
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xk = (n× 1) process state vector at time tk

Φk = (n× n) matrix relating xk to xk+1.

wk = (n× 1) process noise vector assuming a Gaussian sequence with a known

covariance structure.

zk = (m× 1) observation vector at time tk

Hk = (m×m) matrix giving the noiseless connection between the measurement

and the state vector at time tk

vk = (m × 1) observation error vector that is assumed to be a white sequence

with known covariance and having zero cross-correlation with wk

The covariance matrices for the process noise wk and measurement noise vk are

defined as:

E
{
wkw

>
i

}
=


Qk, i = k

0, i = k

(2.8)

E
{
vkv

>
i

}
=


Pk, i = k

0, i = k

(2.9)

where the E denotes the expectation of the quantity in braces, Q is the forecast

covariance and P is the observation covariance. Specifying an error of the filter’s

state estimate as the true value xk and subtracting off it the new filter’s estimated

value x̂−k , we have an expression for the error of the filter as:

e−k = xk − x̂−k (2.10)
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and its associated error covariance matrix as:

P−k = E
{
e−k e−>k

}
= E

{
(xk − x̂−k )(xk − x̂−k )>

}
(2.11)

R.G. Brown then creates an expression that mixes the noisy measurement, zk and

the prior estimate (i.e., the forecasted estimate x̂−k ) thereby defining what is called

the measurement update estimate, x̂−k :

x̂k = x̂−k + Kk(zk −Hkx̂
−
k ) (2.12)

The Kalman gain Kk not only maps measurement space to the state space but it also

weights the measurements according to their covariances. In order to define the most

optimal state estimate x̂k the covariance matrix for it, Pk must be minimized. Pk is

defined below:

Pk = E
{
eke

>
k

}
= E

{
eke

>
k

}
= E

{
(xk − x̂k)(xk − x̂k)

>} (2.13)

Plugging in Eq. (2.12) into the above expression for the state estimate covariance

creates an expression for the error of x̂k which must be minimized. R.G. Brown then

uses a matrix differentiation method outlined in Section 4.2 of [28] that then produces

an expression for Kk as:

Kk = P−k H>k (HkP
−
k H>k + Rk)

−1 (2.14)

where P−k is the forecast variance. This particular weighting matrix, Kk minimizes

the mean-square estimation error on x̂ and therefore we have an expression for the

mean-square estimation covariance as:

Pk = (I−KkHk)P
−
k (2.15)
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Figure 2.5. Kalman filtering process diagram.

and now it is possible to define the forecast using the process (i.e., dynamic) model

equation Eq. (2.6):

x̂−k+1 = Φkx̂k (2.16)

The above expression is missing the wk because process noise has zero mean and is

not correlated with any previous w’s. R.G. Brown then forms the expression for the

a priori error and produces the following expression:

P−k+1 = ΦkPkΦ
>
k + Qk (2.17)

R.G. Brown provides an illustration of the Kalman filtering process that has been

adapted in Figure 2.5. This figure will be used as a template as a means for estab-

lishing my contributions in the field of aeronomy and space physics of the ionosphere-

thermosphere region.

2.2.2 EMPIRE Algorithm. EMPIRE is a data assimilation algorithm that uses

IDA4D time-evolving global estimates of plasma density, N , to estimate the electric

potential and neutral wind drivers of plasma density rate, dN/dt [29]. EMPIRE does
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this by using the ion continuity equation (Eq. 2.5) shown below:

dN

dt
= sP − sL︸ ︷︷ ︸

source terms

− ~∇ · (N~v⊥)︸ ︷︷ ︸
b̂⊥terms

− ~∇ · (N~v‖)︸ ︷︷ ︸
b̂‖terms

(2.18)

Where ~v‖ is

~v‖ = [~u+ ~vg + ~vD] · b̂ (2.19)

where b̂ is the magnetic field aligned unit vector direction. EMPIRE casts the ion

continuity equation into a form below:

y = a+ v (2.20)

Where y represents the LHS of the ion continuity equation (i.e., observations of

dN/dt), a represents a model of dN/dt and v represents the bias error due to a

measurement. The model a is equal to:

a = aP + aL︸ ︷︷ ︸
source terms

+ aexb︸︷︷︸
b̂⊥terms

+ au + ag + aD︸ ︷︷ ︸
b̂‖terms

(2.21)

Where aP is the production model, aL is the loss model, aexb is the field perpendicular

drift convection model, au is the field parallel neutral wind convection model, ag is

the field parallel gravity model and aD is the field parallel diffusion model. Each aX

term above represents a different driver of dN/dt and are obtainable through a model

simulation.

At any given time the solar conditions vary and EMPIRE’s purpose is to

provide updates to models and adjust them based on the current conditions. EMPIRE

makes use of well documented models that have proven successful in reproducing Sq

conditions in the IT and adjusts the models according to current solar activity. This
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allows EMPIRE to be used to estimate the enhancement that solar activity has on

specific drivers. To described this enhancement I add a δa to Equation (2.20) as

shown below:

y = a+ δa+ νa + ν (2.22)

The measurement inputs, y, are also considered to have zero bias. This reduces

Equation (2.22) to the following:

y = a+ δa (2.23)

EMPIRE’s estimation of δa is accomplished by moving all unknowns to the LHS and

casting δa into a linear system that depends on which drivers are being estimated.

y − a = δa (2.24)

The ion continuity equation is used as a mapping function to map from from obser-

vation of the enhancements to coefficients of basis functions that will represent the

correction to a driver.

y − a = Hx (2.25)

where H is the mapping matrix and ~x are the basis function coefficients. EMPIRE

has previously been used to study enhancements in electrostatic potential and neutral

wind drivers. Electric fields as well as neutral wind enhancements along the magnetic

field line are the primary drivers during geomagnetic storm events. When both of
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Figure 2.6. Block representation for a linear measurement model, z = Hx.

these drivers are estimated simultaneously [16] the linear system looks like:

H =

[
HV H‖

]
(2.26)

y − a =

[
HV H‖

]xV

x‖

 (2.27)

z = Hx‖ (2.28)

This linear system can be represented using a block diagram where each block repre-

sents a term from the linear measurement model. Figure 2.6 shows a linear measure-

ment model represented using blocks. The EMPIRE algorithm’s primary function is

to provide a self consistent solution with IDA4D plasma density specifications and

the ion continuity equation, (2.18). Linearization (Eq. (2.25) allows EMPIRE to use

techniques such as Kalman filtering to produce optimal mean-square error estimates

on x. This thesis lays out the ground work for implementation of Kalman filtering,

successfully ingests a new neutral wind data source (Fabry-Perot interferometer mea-

surements) and spherical harmonic basis functions for enabling global estimates of

the physical drivers of the IT system.
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CHAPTER 3

KALMAN FILTERING FOR REGIONAL ESTIMATION

This chapter describes how EMPIRE’s estimation method was modified to use

a Kalman filter. It builds from the Kalman filtering background section and estab-

lishes the definition of each Kalman filtering parameter in the context of estimation

of the IT system drivers.

Previously, EMPIRE used a weighted-least-squares estimation method and

showed promise toward estimation of ionospheric drivers [14, 15, 16]. Least-squares

has the form:

x̂ = (H>WH)−1H>W(z) (3.1)

where H is the observation matrix, x̂ is the state, z is the observation and W is

the weighting matrix. This method has no way to connect state estimates x̂k to the

future state estimates x̂k+1|k but does allow for assimilation of multiple observations

z to produce a state estimate x for a given time step. The terms in equation (3.1)

do not need to change because the measurement model remains the same but the

inversion equation (called the measurement update) does change to equation (3.2)

reprinted below:

x̂k = x̂−k + Kk(zk −Hkx̂
−
k ) (3.2)

where each term was previously defined in Section 2.2.1 and Kk is defined as:

Kk = P−k H>k (HkP
−
k H>k + Rk)

−1 (3.3)

Also, not available with least-square estimation is the ability to adjust the state over

time. This is done using a dynamic model as shown in equation (2.6).
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Figure 3.1. EMPIRE measurement model from estimation of parallel neutral winds
to estimation of geographic northern and eastern horizontal neutral winds

This chapter proposes two changes to EMPIRE: first, a switch from least-

square estimation to Kalman filtering and second, a change of the state from esti-

mating electric potential and parallel neutral wind corrections to estimating north

and east neutral wind corrections separately. Changing the state removes x̂‖ and

adds the states x̂uN and x̂uE. The reason for doing this is to prepare EMPIRE for

ingestion of Fabry-Perot interferometer (FPI) neutral wind measurement shown in

Chapter 4. The change in the measurement model is illustrated with the light blue

blocks in Figure 3.1. There are two main models that a Kalman filter requires: the

measurement model and dynamic model (see Section 2.2.1). The measurement model

is used to estimate the background climate model ‘error’ and the dynamic model is

used to forecast that ‘error’ from one time step to the next. The EMPIRE algorithm

as previously formulated without Kalman filtering is detailed in Appendix A of [16].

Ingestion of plasma densities N is accomplished by organizing measurements
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on a gridded region at consecutive time intervals, either from a model or data as-

similative method such as IDA4D. In this work, IDA4D is used to specify a global

grid of data at 3 degree geomagnetic latitude (θ) and longitude (φ). IDA4D provides

the mean and standard deviation of plasma density, N , at each time step. EMPIRE

subsequently estimates the physical drivers using the ion continuity equation. To do

this, EMPIRE center finite differences the gridded N to produce dN/dt in which the

time at the midpoint is taken.

∆N

∆t (t+ 1
2

∆t)
=
N(t2)i −N(t1)i

∆t
(3.4)

The index i is used as a grid point index and to recognize N is specified across the

globe at at individual (latitude, longitude and radius) points. The standard deviation

chosen for a given midpoint time (i.e., t+ 1
2
∆) is the greater of the standard deviation

at either time step rather than the linear combination of the two:

σ(t+ 1
2

∆t) = max(σt1 , σt2) (3.5)

EMPIRE uses the specified electron densities and formulates an overdetermined linear

system based on the ion continuity equation to estimate the state, i.e. the coefficients

to a functional form for neutral wind and electric potential. Estimates of electron

density are assumed equivalent to ion densities by the quasi-neutrality of the iono-

sphere. We start from the main linear equations upon which the additional data

ingestion and Kalman filtering are built.

The spatial region being imaged is gridded by geomagnetic colatitude θ, lon-

gitude φ and radius R = Re + r, where Re is the mean radius of Earth and r is the

altitude of a given point in the ionosphere. At these grid points EMPIRE computes

the background model and solves for terms that are within the ion continuity equation
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shown below:

dN

dt
= sP︸︷︷︸

aP

+ sL︸︷︷︸
aL

−~∇ · (N~v⊥)︸ ︷︷ ︸
aexb

−~∇ · (N~v||)︸ ︷︷ ︸
a||

(3.6)

aN , aP + aL + aexb + a‖ + δaexb + δa‖ (3.7)

Each of these aterms, where “terms” = {P,L, ||, exb} may be represented by a back-

ground model aterm and are corrected by the estimation process with δaterm.

The term aN is defined as the background model for the change in electron

density, N , over time. Within this background model aP represents the production

rate, aL the loss rate, and a‖ and aexb are drift terms parallel and perpendicular to the

local magnetic field line, respectively. The subscript ‘exb’ to represent the assumption

that ~E × ~B drift is the primary driver for ion drifts that are perpendicular to the

magnetic field line.

The equation is stacked into a system of linear equations of the form:

yN = HNx + aN + vN (3.8)

yN =

[
∆N1

∆t
∆N2

∆t
. . . ∆Ni

∆t

]T
(3.9)

aN =

[
aN1 aN2 . . . aNi . . . aNimax

]T
(3.10)

aNi = aPi + aLi + aexbi + a‖i (3.11)

The corrections δaterm are estimated as part of the state vector x, the sum of the

background models at all i gridpoints is aN , and vN is noise (N(0,RN)), zero mean

with covariance RN) associated with yN and aN . In these expressions, the elements

of yN are the finite differenced plasma densities, and aN is generated based on back-

ground models of the ionosphere. The background models used in this study are
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provided by the following: Kirchengast models [30], the Horizonal Wind Model 2014

(HWM14) [20], Weimer 2000 [26] and the International Geomagnetic Reference Field

11th generation (IGRF-11) [31].

The state x consists of:

x =


xexb

xuN

xuE


(3.12)

Where each xterm is an array of the coefficients of the basis functions for that particular

term. For example, xexb consists of the coefficients for the ion drift term correction.

If certain terms are not being corrected (in this study, production and loss are not

corrected, i.e., δaprod = δaloss = 0), those are truncated from the state vector. See [3]

for more information on the basis functions.

In this work I reformulate the problem to filter additional measurements be-

yond the IDA4D output-based finite-differenced density rates. The Kalman filtering

in EMPIRE is based on a 3D variational (3DVAR) approach, [32, 33, 29]. There are

many resources for understanding Kalman filtering [34, 35, 36] and how it is derived.

This section describes how we use a Kalman filter for our estimation.

The EMPIRE algorithm with Kalman filtering is illustrated as a flow chart in

Figure 3.2. Measurements yN are derived from IDA4D, a 3D variational data assim-

ilation method that uses dual-frequency Global Positioning Satellite (GPS) ground

receivers and satellite occultation GPS receivers for total electron content (TEC)

measurements, satellite in-situ plasma density measurements, and ionosonde mea-

surements to obtain an optimal estimate of the global three-dimensional time-varying

plasma density [29]. In cases in which FPI data measurements yu (to be discussed
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more in Chapter 4) are ingested, these are also included in y. The EMPIRE Kalman

filter performs a best fit to the difference between the measurements and models

to produce a state estimate, which is done similarly to the IDA4D implementation

[33, 32, 37, 29]. The state coefficients are then multiplied by the mapping matrix, H,

to give the EMPIRE correction estimate. Finally this correction is added to the back-

ground models to produce estimates of the ionospheric drivers, e.g., neutral winds.

We express Eq. (3.8) in a more familiar form by rearranging it and including more

traditional Kalman filter notation:

z , y − a (3.13)

z = Hx + ν (3.14)

z =

[
HV HuN HuE

]


xexb

xuN

xuE


(3.15)

The submatrices HV , HuN and HuE are defined in Appendix A. In this formulation

the state x is a best estimate of the discrepancy between the measurements y and

model a. Therefore, z is an adjustment to the background model, not the full iono-

spheric state. Since the system is linear, another way of saying this is that the full

state is a superposition of the background model and the correction x.

The Kalman filter implements a measurement update at time t given mea-

surements at time t (notated as “t|t”) and a time update to forecast to t + 1 given

measurements at t (notated as “t + 1|t”). The cost function penalizes the relative

contributions of xt|t according to their squared deviations from the measurements z
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Figure 3.2. Simplified EMPIRE model and data processing flow chart [3]
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and their squared error from the previously forecast estimate xt|t−1:

J = (z−Hx̂t|t)
TR−1(z−Hx̂t|t) + (x̂t|t − x̂−t|t−1)T (P−t|t−1)−1(x̂t|t − x̂−t|t−1)

(3.16)

where P−t|t−1 is the covariance of the previous forecast update. The observation co-

variance R comes from the published errors in the IDA4D and FPI data (see Eq.

(4.11) for its definition in this study).

We expand the expression H(x̂t|t) around the previously forecast value as:

Hx̂t|t = Hx̂−t|t−1 + H(x̂t|t − x̂−t|t−1) (3.17)

Substituting this expression into the cost function (Eq. (3.16)), computing the gra-

dient with respect to x̂t|t, and equating to 0 yields the optimal estimate:

x̂t|t = x̂−t|t−1 + (HTR−1H + (P−t|t−1)−1HTR−1(z−Hx̂−t|t−1) (3.18)

This is a measurement update of the forecast state x̂−t|t−1, which is a correction to the

background model a. Using the Sherman-Morrison-Woodbury form [32], the error

covariance of the measurement update estimate is:

Pt|t = P−t|t−1 −P−t|t−1H
T (HP−t|t−1H

T + R−1)H(P−t|t−1)T (3.19)

For the dynamic model, we assume the state to be Gauss-Markov, with a transition

of:

x̂−t+1|t = Φx̂t|t + wt|t (3.20)

Φ = exp

(
−tn+1 − tn

τ

)
I (3.21)
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where the subscript n is the time index, I is the identity matrix, τ is a time constant

is a tunable parameter which quantifies how rapidly measurements are “forgotten”

and w is process noise that is normally distributed with zero mean and covariance

W. The time update is then given by:

x̂t+1|t = Φx̂t|t (3.22)

P−t+1|t = ΦPt|tΦ
T + Q (3.23)

The covariance of the process noise Q is defined to have the forecast covariance revert

to the model a covariance in the absence of measurements over time:

Q =

(
1− exp

(
−tn+1 − tn

τ

))2

Ra (3.24)

This concludes the definition of all necessary terms that were required to for-

mulate the Kalman filter. This section showed the measurement model (Eqs. (3.13)

through (3.15)), the measurement update (Eqs. (3.18) and (3.19)) and the dynamic

model (Eqs. (3.22) and (3.23)). The next section shows how the measurement model

is updated to include FPI neutral wind measurements.
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CHAPTER 4

NEUTRAL WIND OBSERVATIONS

EMPIRE originally ingested a 4 dimensional grid of electron density from the

Ionospheric Data Assimilation 4 Dimensional (IDA4D) algorithm. This contribution

adds neutral wind measurements from Fabry-Perot Interferometers (FPI). The EM-

PIRE algorithm will have direct measurements of an ionospheric driver rather than

indirectly estimating it from IDA4D electron density and the ion continuity equation.

This provides a distinctive advantage as compared to electron density only informa-

tion. Section 4.1 describes how the EMPIRE algorithm changes once FPI neutral

wind measurements are introduced and Section 4.2 describes how EMPIRE was used

to study Storm-Enhanced Densities (SEDs). SEDs refer to an enhancement in the

ionospheric electron density due to geomagnetic storm-time processes.

4.1 Augmenting the EMPIRE Linear Measurement Model for FPI Neutral
Wind Measurements

When neutral winds are assimilated into EMPIRE, the measurement model

and dynamic models are augmented to include the new observation from Fabry-Perot

interferometer (FPI). FPI neutral wind measurements provide direct measurements of

the line-of-sight (LOS) thermospheric wind speeds uLOS and associated uncertainties

at an assumed altitude of 250 km, see Figure 4.1. This assumption requires that the

peak emissions originate from an altitude of 250 km.

The FPI makes measurements at an elevation of 45 degrees at the four car-

dinal azimuthal look directions (north, south, east and west). The LOS wind is the

projection of the 3-dimensional geographic wind vector onto the LOS direction k̂ from
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Figure 4.1. An FPI measuring the Doppler shifted emission emitted from the relax-
ation of a recombined O+

2 atom.

the FPI toward the sky:

uLOS = uN n̂g · k̂ + uE êg · k̂ (4.1)

= (auN + δauN)n̂g · k̂ + (auE + δauE)êg · k̂ (4.2)

Where uN and uE are the storm-time horizontal geodetic north and east neutral

winds, n̂g and êg are the geodetic north and east unit vectors, k̂ is the FPI LOS

direction unit vector, auN and auE are the geodetic north and east model neutral

wind values and δauN and δauE are the corrections to the geodetic north and east

model neutral winds. As in Eqs. (3.6) -(3.7), the geographic zonal and meridional

winds are assumed to be comprised of a model (using HWM14) to give auE, auN ,

and corrections δauE, auN . Each measurement uLOS is stacked into an array yu of
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thermospheric wind observations.

yu = Hux + au + vu (4.3)

au =

[
au1 au2 · · · aui · · · auimax

]T
(4.4)

aui =

[
cos(eli) sin(azi) cos(eli) cos(azi) sin(eli)

]

auE

auN

0


(4.5)

where aui is the LOS component of the background model neutral winds at the ith

location, el is the elevation angle, az is the azimuthal angle of the LOS, and εu is

measurement assumed to be white noise. The mapping matrix Hu is detailed in

Appendix A of [3].

When ingesting neutral wind measurements, we augment the EMPIRE linear

system to include not only the continuity equation (Eq. 3.8), but also the LOS neutral

winds.

yN

yu


︸ ︷︷ ︸

y

=

HN

Hu


︸ ︷︷ ︸

H

x +

aN

au


︸ ︷︷ ︸

a

+

vN

vu


︸ ︷︷ ︸

v

(4.6)
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This also leads to an augmentation of the Kalman filter as shown below.

z = Hx + ν (4.7)

z = y − a =

yN

yu

−
aN

au

 (4.8)

H =

HN

Hu

 =

HV HuN HuE

0 H̃uN H̃uE

 (4.9)

z =

HV HuN HuE

0 H̃uN H̃uE




xV

xuN

xuE


(4.10)

Where here I brought in HN to differentiate between HN and Hu. From here, the

same measurement update and dynamic model equation applies but with newly de-

fined terms (See Eqs. (3.18), (3.19), (3.22) and (3.23)). This updates the EMPIRE

measurement model from what was defined in Chapter 3 as equation (3.15) to equa-

tion (4.10). This change is illustrated with light blue blocks in Figure 4.2.

This concludes modification of the EMPIRE algorithm and my 2nd contribu-

tion. The next step was to test this algorithm and examine how the Kalman filter

and FPI neutral winds affect the solution and what does ingestion of FPI data into

a data assimilation environment tell us about neutral wind measurements and vise

versa.

4.2 Application of EMPIRE to Study Geomagnetic Storm Enhanced Den-
sities

In this section I apply the EMPIRE algorithm with the newly added KF
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Figure 4.2. EMPIRE measurement model augmentation for ingestion of FPI neutral
winds.
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and FPI ingestion modifications from contributions 1 and 2 to study a geomagnetic

storm. There are four subsections and they are laid out in a standard format with

the method describing the EMPIRE configuration, results showing neutral winds and

ion drift storm time EMPIRE estimates a discussion and concluding remarks. This

work was published in 2016 in the peer reviewed journal of Radio Science [3].

4.2.1 Method. The storm to be studied occurred on 24-25 October 2011; Figure

4.3 shows the Dst index during this storm. The Dst minimum occurs at 0100 UT

on 25 October. The storm led to a mid-latitude storm enhanced density (SED) in

the afternoon/dusk sector over the U.S. [38]. In addition to the SED, there was a

localized post-Sunset TEC enhancement over the southeastern United States. Similar

mid-latitude TEC enhancements have been studied before [39, 40, 41, 42], albeit only

for extreme geomagnetic storms [43].

In Figure 4.4, bi-hourly maps of the southeastern U.S. show the post-Sunset

TEC enhancement. These figures were created using a 1-degree resolution grid in

IDA4D to generate electron densities that are then integrated to give vertical TEC.

During this storm, a mid-latitude FPI of the North American Thermosphere

Ionosphere Observation Network (NATION) array was operational, at Pisgah Astro-

nomical Research Institute (PARI) [44]. The location of the FPI sampling locations

at approximately 250 km altitude is marked on each figure with a purple star. The

PARI site is at the center of these locations marked by a white star. At 00:00 UT post-

Sunset recombination is occurring, but the intensification of the geomagnetic storm

causes the formation or convection of 60 TECU of plasma into the mid-latitude re-

gion, over Florida and the southeastern U.S. The PARI neutral wind measurement

sites straddle the northern boundary of the enhancement. By 04:00 UT the enhance-

ment is still about 60 TECU but does not appear to have co-rotated perfectly, and

is over the Gulf of Mexico west of Florida. By 06:00 UT, the TEC enhancement has
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Figure 4.3. Provisional Dst index during the storm period under investigation [3]
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Figure 4.4. TEC maps at 1-degree resolution over southeastern U.S. A post-dusk
localized TEC enhancement is visible over the Gulf of Mexico [3]
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diminished to less than 40 TECU, with background nighttime plasma of less than 20

TECU.

The orders for the power series fits of the EMPIRE corrected terms are selected

to be relatively low order. For δuuN and δuuE I chose kmax, lmax, pmax to be equal

to 3, 3 and 3 respectively. The electric potential is a power series of the equatorial

radius of the field line that identified at a given grid point and the longitude. This

makes lmax = 0, but kmax and pmax are 5 and 6 respectively. The state vector is then

a total of 170 elements long with 48 of them being coefficients for electric potential

δV , 64 for uuN and another 64 for uuE. All three power series expansions have the

radial component centered at Earth’s center (R0 = 0), the longitudinal component is

centered at 0 radians geomagnetic longitude and the colatitude component is centered

at the equator (θ0 = π/2). I selected a relatively low degree for the basis function in

order to better understand effects from the Kalman filter as well as FPI ingestion.

The state vector is defined by the number of basis functions. In this study I

have a length of 170 where 42 of them are for xV , 64 for xuN and another 64 for xuE.

I chose not to correct production and loss because production is likely negligible as

this occurs during local nighttime, and loss may be so as well, given the persistence of

the TEC enhancement. Loss alone cannot be constrained to be nonpositive without

reformulating the problem as one with inequality constraints, which is beyond the

scope of this work.

In order to expose the behavior of FPI ingestion on EMPIRE we desire the

corrections to the model be large. One way to do this is to assume quiet geomagnetic

conditions for the HWM14 model and allow ingestion of the FPI to make the necessary

corrections. This is accomplished by keeping the Ap value at a default value (19 nT)

that is half the mean daily Ap value for October 25th 2011 storm.
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The Kalman filtering method in EMPIRE requires characterization of the error

for each of the background models and measurements. Appendix A.3 describes the

model covariance Ra.

The measurement covariance R consists of the uncertainty in IDA4D electron

density rate “measurements” σyN and, when ingested, FPI neutral wind measurement

uncertainties σyu , such that R is diagonal matrix of variances. The measurements

from IDA4D are all assumed independent which is an approximation since IDA4D is

itself a tomographic inversion algorithm. IDA4D provides a covariance matrix which I

then manually select the diagonal elements from for the purposes of this first Kalman

filtering study.

R = diag(σ2
yN ,1

, σ2
yN ,2

, . . . , σ2
yN ,i

, . . . , σ2
yN ,imax

,

(cσyu,1)2, (cσyu,2)2, . . . , (cσyu,i)
2, . . . , (cσyu,imax)

2) (4.11)

The FPI neutral wind measurement error σyu,i at the ith location is provided with

the data set downloaded from the Madrigal Haystack website. These may be scaled

by a factor of c that is artificially included for testing the Kalman filter response in

the subsequent sections. Similarly, the IDA4D electron density error σt at time t is

provided with the IDA4D data set. The density rate variance σ2
yN ,i

is determined

by the larger variance of the two densities that are time-differenced. This is done

to allow relative weighting between subsequent density variances but so the variance

does not become too large as compared to FPI and model variances:

σ2
yN ,i

=
max[σ2

t2
, σ2

t1
]

(∆t)2
(4.12)

EMPIRE outputs were tested using traditional summation of the variances for IDA4D

densities and for the ‘as-is’ FPI variances. The resulting variances were too large to
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make a meaningful adjustment to the background model. Adjustment of variances

and weighting to better capture physical storm time dynamics will be a part of future

work with EMPIRE.

4.2.2 Results. The results are divided into three parts. In Section 4.2.3 we examine

the EMPIRE Kalman filter by analyzing the neutral wind estimate’s response to FPI

ingestion when tuning the FPI variance. In Section 4.2.4 we discuss neutral wind

estimation at all four FPI line of sight measurement locations and explore the effect

of ingesting only two of those locations. Section 4.2.5 presents FPI measurements of

the vertical neutral wind and describes how it indicates that the FPI measurements

are partly contaminated. Finally, in Section 4.2.6 we look at how FPI ingestion affects

ion drift estimation.

4.2.3 Demonstration of Kalman Filtering in EMPIRE. Figure 4.5 shows how

FPI ingestion changes EMPIRE estimation at the northern FPI measurement loca-

tion. The HWM14 background model is shown in green, and the FPI measurements

at this location in black with error bars showing the magnitude of σyu . The red line

with X markers, labeled “no ingest” (NI), shows EMPIRE estimates using only the

IDA4D plasma density measurements to correct the HWM14 model. The EMPIRE

estimates that use FPI measurement data are shown as the cyan through magenta

lines, for different choices of factor c in Eq. (4.11) for scaling the FPI data uncer-

tainty σ = σyu . As the line color transitions from cyan to magenta c becomes smaller,

weighting the FPI measurements more heavily in the Kalman filter.

The NI estimate and the σ ·10 are nearly coincident with one another. In fact,

the root mean square of the difference between the NI estimate and the σ · 10 over

the entire 10 hour analysis time comes to 0.47 m/s which is very small and within

uncertainty. Multiplying by σ · 10 has essentially deweighted the FPI measurements

to such a point that the resulting estimate is nearly equivalent to using no FPI
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Figure 4.5. Northern facing FPI line of sight neutral wind velocities. The ‘*’ indicates
the scaling selected for subsequent analysis [3].

measurements whatsoever.

The σ · 1 line shows EMPIRE’s estimate when the FPI measurements are

weighted purely by the uncertainty in the FPI measurements that is provided by the

publicly available data set and shown using the error bars in Figure 4.5. If the FPI

σ is scaled with c < 1, the solution curve shifts towards the FPI measurements. This

exercise indicates that the Kalman filter works as anticipated, in providing a solution

that blends the model with measurement, according to the relative weighting between

them.
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The scale factor c allows us to control how much the EMPIRE estimates are

influenced by the FPI neutral wind measurements. By selecting c = 1/10, the FPI

measurement’s influence on EMPIRE estimation contrasts more strongly with the

HWM14 model than would be possible with only the published data covariances.

The FPI variances are tuned as opposed to IDA4D and the background models be-

cause they are published covariances that have easy access for other researchers to

also modify or use as they see fit. Computing IDA4D and background model covari-

ances and weighting is still a subject of continued research. The background model

variances/weights could have been adjusted to be larger instead of decreasing the FPI

variances and it would have similar effects as decreasing the FPI variances do. We

chose to adjust the FPI variances since they are well known and published values

compared to IDA4D values and our choice of model.

4.2.4 EMPIRE Neutral Wind Estimate Validation. This section examines

three cases, each using a different number of FPI data measurement points, all with

c = 1/10 used for the FPI data in Eq. (4.11). The “no ingest” (NI) case uses only

IDA4D-derived electron densities without any FPI measurements. The “half ingest”

(HI) case uses two FPI measurement locations (i.e., north and west LOS directions)

and the IDA4D-derived electron densities, and the “full ingest” (FI) case uses all

four of the FPI data measurement locations along with the IDA4D-derived electron

densities. For the HI case, the north look direction was chosen mainly because it

has the largest winds and the western direction was chosen as a perpendicular LOS

direction. Having ingested larger winds causes EMPIRE to apply larger corrections.

Ingestion of south and east was also tested but is not shown. Other pairs (N-E or

S-W) would not span the TEC enhancement shown in Fig 4.6, or in the case of (N-S

or E-W) would not sample both meridional and zonal wind directions.

Figure 4.6 shows how FPI ingestion affects the EMPIRE estimation at all four
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FPI line of sight measurement locations. Plotted are the line-of-sight neutral winds,

positive away from the FPI, as modeled by HWM14 (green), measured by FPI (red),

and estimated by EMPIRE. There are three sets of EMPIRE estimates in each figure:

NI (light blue), HI (medium blue), and FI (dark blue). The results corresponding

to Figure 4.5 are reprinted in Figure 4.6(a) as the model, measurement, NI, and FI

lines.

The HWM14 results show an easterly wind beginning at 00 UT. As time pro-

gresses the wind turns southward, eventually having almost completely southward

flow at around 06 UT. The FPI measurements indicate quite different conditions.

Unlike the model, the western and eastern measurement directions show westerly

winds that are in stark disagreement with the model. The north and south mea-

surement directions show an interesting feature: the northern site indicates strongly

southward flow, particularly from 00 to 05 UT. The southern site shows very little

wind with brief periods of northward wind. The north direction measuring a strong

southward wind and the south direction measuring a slight northward wind would

indicate a convergence is occurring. See Section 4.2.5 for a discussion on the possible

reasons for the resolved convergence. The comparison between the HWM14 model

and data indicate that the thermospheric state has significantly changed from the

quiet time conditions represented by HWM14.

The NI results stay near the model for the east and west directions. From 00

to 05 UT the north and south NI estimates stay closest to the model compared to HI

and FI. After 05 UT, the NI result does a better job than HI and FI with estimating

the measured north and south winds, for the most part falling within the error bars

of the measurements. The improved agreement with FPI data from 05 to 10 UT is

notable, given that only electron density rates are being assimilated in this case. The

ion continuity equation relates only the field aligned neutral winds to changes in field
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Figure 4.6. FPI measured line of sight component to neutral winds as produced by the
HWM14 model, FPI measurements themselves, and EMPIRE estimates for three
separate runs: no ingest, half ingest and full ingest. Each subplot corresponds to
one of the different FPI line of sight measurement locations[3].
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aligned ion drifts. Also, the north and south LOS directions are closer to the field

aligned direction than the east and west are because the magnetic field declination

angle varies from 1 degree to -11 degrees from the geographic north direction and the

dip angle between 52 and 66 degrees from horizontal. This is why there are larger

adjustments to the meridional directions than the zonal directions.

Also shown in Figure 4.6 is the HI set of EMPIRE estimates. The purpose

of ingesting half of the data is to examine how ingestion of the north and west data

affects the estimates in the south and east, whose FPI measurements can then be

used for comparison. The HI results at the north and west locations (Figures 4.6(a)

and (b)) are closer to the FPI measurements than the model, NI, and the FI cases are.

However, for the south directions the HI case disagrees with the FPI measurements

even more than the model or NI case and only does from 00 to 05 UT. After 05 UT,

the HI and NI cases both have similar solutions. East results indicate an improved

comparison between data and the HI case, as compared to the model or NI case.

Very good agreement is seen after 05 UT. The south and east HI estimates are being

heavily influenced by the north and west directions because of heavy weighting of FPI

measurements (of which only the north and west are being considered) as compared to

the HWM14 model and IDA4D. The resulting powerseries from the heavy weighting of

the FPI measurements in the north and west does not have enough distance ( 500km)

to readjust to the green model or IDA4D derived neutral winds. For the FI case the

large negative velocities in the north are driving the southern locations to still remain

away from the FPI measurements because of a ‘stiffness’ in the chosen power series.

The north and west’s influence on the south and east can be seen in Figure

4.7, which shows HI estimates plotted for all four measurement locations on a single

figure. For the north (solid blue) and west (solid red) directions, positive speeds are

away from the FPI. Assuming that the vertical winds are negligible, the south and
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east EMPIRE HI estimates shown in Figures 4.6(c) and (d) can be multiplied by -1

to make positive speeds also northward and westward (Figure 4.7 dashed lines).

The north and west estimates, whose FPI measurements are ingested, dictate

the trend that the winds in the south and east will follow. Any deviation from this

trend is due to influences from IDA4D, the models, and the order of the power series

basis function only, as EMPIRE also assumes zero vertical velocity. As the order of

the power series basis function increases it will allow for more flexibility in the result.

If an infinite number of basis functions could be used then the solution can adjust as

needed anywhere such that a the exact balance set by covariances and weighting of

FPI, IDA4D and model could be reached. The neutral winds estimated by EMPIRE

that drive the IDA4D ion density drifts do not produce a neutral wind gradient that

is capable of matching the large north-south gradient measured by the FPI. This

explains why, in Figure 4.6, the south and east EMPIRE HI estimates disagree with

the measurements from 00 to 05 UT. A probable explanation for why IDA4D and

the models do not produce such a gradient is because the winds being measured by

the FPI are not representative of the actual thermospheric winds as Section 4.2.5 will

discuss.

When all four measurement locations are ingested in EMPIRE the FI estimates

trend closer to the FPI measurements in all four measurement locations except for the

northern location. The relatively slower winds measured and ingested in the south

is influencing the solution in the north enough to increase disagreement between FI

estimates and the FPI measurements. In the north direction, the very large negative

LOS winds measured around 01:30 UT correspond to strong southward winds. At

the same time (01:30 UT), the FPI measurements in the south direction are nega-

tive winds which correspond to northward winds. The FPI is therefore measuring an

apparent wind convergence across the TEC enhancement that EMPIRE never fully
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Figure 4.7. EMPIRE estimated winds based on ingesting the north and west locations.
The south and east measured speeds are scaled by -1, so that positive speeds on
the plot indicate northward and westward speeds, respectively [3] .
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captures even with increased weighting on the ingested FPI data. The disagreement

between EMPIRE full ingest estimates in the north and south to the FPI measure-

ments between 00 and 05 UT can therefore be attributed to EMPIRE disagreeing

with the large spatial gradient of velocity that is measured by the FPI.

4.2.5 Possible Evidence for the Effects of Contamination in the Redline

Emission. In the HI case, in which wind measurements from the north and west

were ingested into the algorithm, EMPIRE estimates for the southern and eastern

LOS directions significantly disagree with the FPI measurements from 00 to about 05

UT. After this time, the EMPIRE estimated winds and those measured agree quite

well.

EMPIRE’s Eq. (4.3) relating FPI measurements to neutral winds assumes that

the FPI measurements are indicative of the thermospheric, and only thermospheric,

winds at the intersection point of the instrument’s line of sight and the assumed

emission altitude of 250 km. However, [45] presented evidence that the measured

redline emission at midlatitudes during storm conditions can be complicated by the

presence of non-thermal O, meaning that the derived winds and temperatures from the

instrument are no longer representative of thermospheric wind. Alternatively, similar

effects on the estimated neutral winds have been hypothesized due to atmospheric

scattering in the presence of a strong spatial gradient in the emission intensity [46],

as is the case on this night. The primary signature indicative of either contamination

source is the appearance of unrealistic, downward apparent winds. Under typical

conditions, the vertical wind in the thermosphere is quite small, with a magnitude

less than 10 m/s.

To investigate whether “contamination” is present for the 24-25 October 2011

storm, we present the estimated vertical wind from the PARI FPI in Figure 4.8 as

the red error bar lines. The period from approximately 00 to 05 UT shows evidence
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Figure 4.8. FPI vertical winds, the difference between EMPIRE half ingest results
and FPI measurements for the measurement directions versus UT hour [3].

of large (peaking at 100 m/s) apparent downward winds, which is likely evidence

of the contamination. The south and east directions (Fig. 4.6(c) and Fig. 4.6(d))

were not ingested into EMPIRE in the HI case. From about 00 to 05 UT the largest

disagreement with the measured winds coincides with the vertical wind indication of

contamination.

Our explanation for the inability of EMPIRE to predict north and west winds

from 00 to 05 UT is that the measured velocities from the FPIs during this period

are not indicative of solely thermospheric wind. This means the data assimilation

method’s assumption that FPI measurements are thermospheric winds is no longer

valid. Once the contamination goes away after 05 UT, the measured and estimated

winds begin to agree, suggesting that the FPI measurements are once again indicative

of thermospheric wind.
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For the “full-ingestion” case, the EMPIRE Kalman filter is then trying to

simultaneously adjust the estimate to non-thermospheric measurements in all four

directions. The EMPIRE estimate’s disagreement with the FPI measurement can,

therefore, be attributed to contamination in addition to the thermospheric motion

during the period between 00 to 05 UT.

4.2.6 Ion Drift Estimation. With the caveat that the previous section showed

the result of ingesting “contaminated” FPI data from 00 to 05 UT, in this section we

review the effect the FI and HI cases have on ion drift estimates. Figure 4.9 shows

EMPIRE’s ion drift estimates at the north FPI LOS location with the three com-

ponents of ion drifts: field-perpendicular in the zonal (positive eastward) direction

(4.9(a)), magnetic field-parallel (4.9(b)), and field-perpendicular in the meridional

plane of the field line (4.9(c)). There are 4 lines in each subplot: three lines rep-

resenting each of the ingestion cases, and the background model (Weimer 2000 and

IGRF-11 models.) as the green line.

The field-perpendicular zonal and meridional ion drift velocities shown in Fig-

ure 4.9 are insensitive to FPI ingestion, as seen by the lack of difference between

NI, HI, FI, and model curves. Not shown here, EMPIRE corrections for the analysis

region at north and western longitudes (away from the FPI measurement locations)

are much larger. The first possible reason is that the Weimer model is returning

negligible electric potential because the convective two cell region has retreated pole-

ward, giving near-zero background model ion drifts at latitudes equatorward of the

northern FPI location (∼ 37.3◦ N). EMPIRE estimating zero corrections to Weimer’s

predicted zero ion drift is therefore leaves EMPIRE’s results reasonable. Also, the

relatively large uncertainties on IDA4D-based density rates (median covariance value

is 210%), which are the only measurements providing observability of the E × B

drifts, means that EMPIRE corrections will tend to be small. IDA4D electron den-
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Figure 4.9. Field-aligned ion drift velocity estimates and model estimates for the
northern FPI LOS measurement location [3].
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sity standard deviations are on the order of 30-40% but because we finite difference

the data is made even more noisy.

The reason the parallel direction remains sensitive to FPI neutral wind in-

gestion may be attributed to the physics described by the ion continuity equation.

Equation (2.18) assumes that the dominant term in the field perpendicular direction

is E × B drift. In contrast, in Eq. (2.18), ion motion in the field-parallel direction

is influenced by neutral winds, gravity and diffusion. This essentially decouples the

physical drivers, so ingestion of FPI neutral wind measurements mostly affects EM-

PIRE ion drift estimation in the field-parallel direction only. From 05 to 10 UT,

the NI, HI, and FI solutions estimate similar field-parallel drifts, i.e., northward and

downward. During the 00 to 05 UT interval, anti-parallel, namely upward and south-

ward,drifts are estimated by EMPIRE when ingesting the FPI data. Although from

00 to 05 UT the FPI vertical LOS detects significant negative (downward) speeds,

indicating contamination [45], the southward drifts are corroborated by the IDA4D

density maximum at the longitude of PARI drifting southward particularly after 02

UT.

4.2.7 Conclusion. EMPIRE has been successfully adapted for ingesting neutral

winds using a Kalman filter technique. By using the ion continuity equation to de-

fine the required measurements and models we have estimated the neutral wind state

over the southeastern United States during the 24-25 October 2011 storm. The use

of Kalman filtering with EMPIRE allows the solution to be sensitive to covariances

of models and measured FPI data. Characterization of the EMPIRE estimates based

on data provided by FPI neutral wind measurements and IDA4D-derived plasma

densities shows that, at the location of the FPI measurements, the EMPIRE neutral

wind estimates favor FPI measurements. EMPIRE estimates away from the measure-

ment locations improve, but have difficulty matching the large north-south neutral
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wind gradient measured across the storm-induced nighttime plasma enhancement.

Ion drift estimation in this region shows sensitivity to FPI ingestion in the magnetic

field parallel direction.

The results presented in Section 4.2.5 add to the supporting evidence for con-

tamination of the stormtime, midlatitude redline emission. Developing an under-

standing of how to handle this contamination in FPI measurements and how to best

leverage physical models for data assimilation are both part of ongoing work.

Given that FPI ingestion proved useful, efforts are under way to generalize

assimilation of FPI data. More FPIs will allow for improved estimation over entire

regions that encompass structures such as the one shown in Figure 4.4. Future de-

velopment of EMPIRE will also make use of techniques described by [47] to estimate

the airglow altitude distribution. Also the effects of increasing the degree of the poly-

nomial while maintaining an adequately overdetermined system is also still a matter

of investigation. This could allow for more optimal results with a balance between

run time, error and resolution.
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CHAPTER 5

GLOBAL ELECTRIC POTENTIAL ESTIMATION

Previously, EMPIRE was designed to produce estimates regionally. While this

can be very useful, many phenomena associated with the IT system drivers involve

global processes. In order to capture these processes EMPIRE must use methods

suitable for global inversion and reconstruction. This section begins by introducing

two primary global phenomena of the IT system and then introduces how EMPIRE

has been modified to estimate the electric potential driver on a global scale.

5.1 Global Phenomena Associated with the IT System

Global phenomena within the IT system typically involve the transport of

energy and mass from high to low latitudes and from day to night longitudes. Energy

can enter the Earth’s ionosphere from the upper boundary (∼1000km). When a

coronal mass ejection (CME) is directed toward Earth, the collision between the

solar wind and Earth results in an exchange of energy that ultimately results in an

observable change in energy (i.e., neutral wind and ion drift velocity) throughout the

IT system [23]. Similarly, intense tropospheric storms (i.e., hurricanes) and seismic

activity can propagate energy up through the lower boundary (80km) (cite Komjathy)

through gravity waves.

The energy in the thermosphere (i.e., neutral gas) can transfer to the iono-

sphere (i.e., ionized gas) through collisional drag as was explained in Chapter 2. As

the ionosphere is accelerated by electric fields during intense geomagnetic storms, it

collides with neutral winds resulting in abrupt changes in neutral wind speeds. Sim-

ilarly, propagating waves within the thermosphere can accelerate ions during both

geomagnetically quiet and active times. One of the challenges in understanding the
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thermosphere-ionosphere coupling is the ability to capture ionospheric drivers glob-

ally. In particular the neutral-wind dynamo effect is an area of great interest within

the scientific community.

The neutral wind dynamo describes the collisional interaction between the

thermosphere and ionosphere. It is characterized by an acceleration of ionospheric

drifts in response to thermospheric winds. Energy deposited into the thermosphere

can originate anywhere globally and the dissipation can result in the disturbance

reaching around the entire globe. The acceleration of thermospheric winds during

geomagnetic storms typically occurs at high latitudes during geomagnetic storms.

The thermospheric kinetic energy then dissipates by propagating to low latitudes with

slow moving and large gravity waves . It is possible to observe ion and thermospheric

accelerations up to 48 hours after storm onset due to the neutral wind dynamo [48].

Understanding the neutral wind dynamo will require an assimilation algorithm that

provides estimates of the neutral wind globally during geomagnetic quiet and active

periods. With this motivation, the next section describes how EMPIRE is extended

from a regional assimilation algorithm to global algorithm.

5.2 Basis Functions for Global Estimation of Electric Potential

EMPIRE estimates a best-fit basis function to represent corrections of physi-

cal drivers. In order to estimate a function that spans the entire globe the function

must be continuous on a spherical domain such as Earth. Previously, EMPIRE was

designed with power series basis functions [14, 15, 16, 3]. While power series basis

functions are easy to implement, they are not continuous on a spherical domain and

are not orthogonal to one another. Spherical harmonic basis functions, on the other

hand, are well documented and used widely for fitting to data that is spatially dis-

tributed on a sphere. I chose to implement spherical harmonic basis functions within

EMPIRE primarily to eliminate the discontinuity that power series basis functions
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have on the -180, 180 degree longitude boundary.

Modification of EMPIRE for use with spherical harmonics basis functions to

estimate electric potential requires changing its measurement model. The full deriva-

tion is laid out in Appendix B and has two main parts. The first part is the definition

of the basis function δV and the second is mapping from the basis function coeffi-

cients xlm to ~E × ~B drift ion convection (defined as δaexb). The definition of the

independent variable ` constrains the electric potential to a field line and therefore

reduces the electric potential to a function of two independent variables.

δV (`, φ) =
L∑
l=0

l∑
m=0

Pm
l (`)Φm

l (φ) (5.1)

Φm
l (φ) is defined as:

Φm
l (φ) = [xlmc cos(mφ) + xlms sin(mφ)] (5.2)

` is defined as:

` = −1 +
−2

Lmin − Lmax
Lmin +

2

Lmax − Lmin
L (5.3)

and L is a variable that refers to surfaces consisting of all field lines having the same

magnetic field strength at the equator, and is defined as:

L(r, θ) =
(r +Re)

Re sin2(θ)
(5.4)

Pm
l is the Legendre polynomial shown in the appendix as equation (B.4) and Φm

l (φ)

contains the harmonic term which is a function of longitude as well as the coefficients.

If the coordinate system (r, θ and φ) is defined as the geomagnetic coordinate system

the centered dipole approximation of Earth’s magnetic field may be used to define

the L-shell Equation (5.4) above. The consequence of defining the spherical harmonic
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as a function of ` and φ means that the electric potential is constant along dipole

magnetic field lines. The scaling from L-shell to ` allows the domain to span from -1

to 1 thereby preserving orthogonality of the Legendre polynomials.

Now I will summarize what is necessary to map from coefficients xV of the

spherical harmonics to dN/dt. To map δV to dN/dt the observation matrix HV has

to be constructed to fit within the EMPIRE linear system shown in Section 2.2.2.

Returning to the definition of Kalman filtering measurement model (See Section 2.2.1

and Figure 2.5):

z = Hx = δaexb + δau (5.5)

Recall we assume the measurement bias ν is equal to zero. The observations are

defined as:

z =

zdNdt

zu

 =

ydNdt

yu

−
a0

au

 (5.6)

H =

HN

Hu

 =

HV HuN HuE

0 H̃uN H̃uE

 (5.7)

x =


xV

xuN

xuE


(5.8)
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Figure 5.1. EMPIRE measurement model changes that occur due to changing the
electric potential basis functions. The mapping matrix HV and the coefficients xV
are affected.

When the expanded form is placed together the measurement model looks like:

yN

yu

−
aN

au

 =

HV HuN HuE

0 H̃uN H̃uE




xV

xuN

xuE


(5.9)

The measurement model terms above that are changed include MV and xV . This

is illustrated using the light blue blocks in Figure 5.1. The coefficient array xV now

contains two sets, one for sine and the other for cosine. The derivation of HV is found
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in Appendix B and starts with the expression for δaexb shown below.

δaexb = −~∇ · (Nδ~v⊥) = −~∇ ·

(
N
−~∇δV × ~B

B2

)
(5.10)

Derivation of the above equation requires three operations to be applied to the basis

functions δV shown below:

1. The gradient: −~∇ to form the electric field ~E

2. The cross product: − 1
B2
~∇δV × ~B to form the ion drift δ~v⊥

3. The divergence: to form the ~B-field perpendicular ion convection

The definition of HV completes the measurement model (See Appendix B for full

derivation to see the steps carried out above).

5.2.1 Testing the implementation of spherical harmonics. The definition

of δV (`, φ) to be a function of ` and φ allows for the electric field to vary along

geomagnetic field lines and longitude. It is possible to check if this constraint on the

magnetic field line is working properly by plotting δV on a 2D slice in longitude so

a single meridian is shown. Figure 5.2 shows the grid used to compute a 2D slice of

electric potential. The basis functions were fit using measurement and model data

from the March 17th 2015 St. Patrick’s Day Storm and is at a similar longitude

to an ISR located at the Millstone Hill Observatory. Details on the datasets and

the geomagnetic storm can be found in Chapter 6. Figure 5.3 shows the the electric

potential corrections plotted at the grid points from Figure 5.2. The results show that

the electric potential is varying with geomagnetic field line only as the field lines are

shown to have constant values. This demonstrates the behavior of the basis functions

and shows that they produce electric potentials that are constant along a field line.
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Figure 5.2. A half circle representing a spherical Earth is drawn in black with a red
line showing a single dipole field line that corresponds to 250km altitude and 53
degree latitude. The blue dots are the specified grid points used to reconstruct the
electric potential values. Also plotted with thin dotted lines are geomagnetic field
lines. The y and x axes are both in meters.
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Figure 5.3. A half circle representing a spherical Earth is drawn in black with a red
line showing a single dipole field line that corresponds to 250km altitude and 53
degree latitude. Also plotted is the thin dotted lines which represent geomagnetic
field lines. The y and x axes are both in meters.

The main purpose of choosing spherical harmonics is to have continuous solu-

tions on a spherical domain. To show that the spherical harmonics are continuous I

have plotted in Figure 5.4. The red dashed line locates the -180/180 boundary and

shows that EMPIRE’s solution is continuous. This figure also shows the shape of the

spherical harmonic functions estimated by EMPIRE for the given time step.

Not shown here, as EMPIRE changes its grid the solution also changes. This is

expected as the data that is being ingest also changes but when the grid is greater than

60-70 degrees latitude a different effect influences the solution more dramatically. This

is due to the use of a dipole magnetic field model. EMPIRE uses the dipole magnetic

field model to constrain its electric potential results to be constant along the field

line. Earth’s magnetic field can be modeled as a dipole to first order, however, as the

distance from Earth increases the dipole magnetic field weakens and becomes more

distorted by the interplanetary magnetic field that is produced from the Sun and by
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the solar wind [23]. As such, modeling the electric potential as constant along a dipole

magnetic field becomes inaccurate around geomagnetic latitudes of 60-70 degrees. At

higher latitudes than this, the L-shells extend beyond the distance which the dipole

field model holds (L-shell of 10). Also, the magnetic field lines at high latitudes are

’open’ meaning they connect with the interplanetary magnetic field.

Demonstrating the effects this has on the EMPIRE solution is not trivial but

it is summarized here. The effects of using the dipole field model is that the solution

across the globe changes drastically as the grid changes from 87◦ to about 65 ◦.

The requirement of δV to be parameterized by ` (scaled L-shell) and longitude (φ)

essentially creates an non-uniform sampling in the Legendre space. Legendre space

is what I call the domain EMPIRE uses to fit the electric potential basis functions,

[-1 to 1]. This is an important realization for the way EMPIRE is formulated and is

why EMPIRE’s grid kept at geomagnetic 30◦ to 150 ◦ colatitude in the study that is

conducted later in Chapter 6. Modeling the electric potential as a function of ` and

φ simplifies the implementation drastically.
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Figure 5.4. EMPIRE electric potential correction estimates plotted at 57◦ N latitude
from -180 to 180. The red line marks the location of the -180/180 boudnary.
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CHAPTER 6

A STUDY OF THE SUB-AURORAL POLARIZATION STREAM WITH EMPIRE

Global phenomena within the ionosphere-thermosphere (IT) system typically

involve the transport of energy and mass between high to low latitudes and between

day to night longitudes. It is typical that equatorward neutral wind surges occur

during geomagnetic storms occur at midlatitudes. At high latitudes momentum and

energy between the ionosphere and thermosphere are intensified during storm time,

and that energy dissipates equatorward. This equatorward surge is particularly visible

at mid-latitudes [49].

Occasionally meridional equatorward surges do not occur during geomagnetic

storms. Storm-time winds can turn poleward typically following a midnight or post-

midnight equatorward surge as seen at the Millstone Hill (MH, 42.6◦ N, 71.5◦ W;

geodetic) observatory [50]. In the premidnight sector the disturbances are generally

weak and equatorward but occasionally have brief poleward turning that is sometimes

due to traveling atmospheric disturbances (TADs) [51].

During severe a geomagnetic storm [5] identified an ‘anomalous’ premidnight

poleward meridional surge that persisted for several hours during the 17-18 March

2015 severe geomagnetic storm. They attributed the poleward surge to the sub-

auroral polarization stream (SAPS) flow. SAPS is a magnetosphere-ionosphere cou-

pling process located in a relatively narrow region of low conductivity between the

auroral precipitation zone and the plasmasphere boundary layer [52]. Intense SAPS

flows provide strong convective forcing to move plasma to higher altitudes where re-

combination rates are reduced, leading to large storm enhanced densities (SEDs). It is

also understood that the intense SAPS flows introduce perturbations in the westward
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winds due to ion-drag effects [53]. This three way relationship between ionospheric

plasma density, thermospheric wind and ionospheric plasma drift motivates us to in-

vestigate whether changing ionospheric plasma density during this period is evidence

of zonal ion drifts consistent with the SAPS feature identified in [5].

This chapter shows that the assimilated use of global navigation satellite sys-

tem (GNSS)-derived ionospheric plasma density measurements and Fabry-Perot in-

terferometers with storm-time background models can be used to estimate ion drift

behavior consistent with SAPS flows that models struggle to capture. The Esti-

mating Model Parameters for Ionospheric Reverse Engineering algorithm (EMPIRE)

uses 4-dimensional ionospheric plasma density measurements provided by IDA4D [29]

to estimate corrections to the electric potential and thermospheric winds, globally.

The results are storm-time ionospheric driver corrections that are consistent with the

ionospheric plasma density changes over time through the use of the ion continuity

equation [23].

6.1 Method

This section contains 2 main parts, a description of the geomagnetic storm

from which the ingestion data originates and a section on the configuration parameters

necessary to produce EMPIRE results.

6.1.1 Geomagnetic Storm. On 17 March 2015 Earth was struck by a coronal

mass ejection. Sudden commencement began at approximately 04:45 UT with a low

latitude response of about 50 nT and a minimum Dst of -195 nT marking the end of

the main phase around at 23:00 UT. Figure 6.1 shows the Dst index for the entire

month of March 2015. The Kp index reached 8 which classifies this geomagnetic

storm as severe, and the daily Ap index was 108, making this storm the most severe

magnetic storm of solar cycle 24. This storm became the focus of much research [5].
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Figure 6.1. Dst index for the month of March where the shamrocks indicate the St.
Patrick’s Day storm day. Figure modified from the original and provided by the
World Data Center (WDC) for Geomagnetism, Kyoto [4].

During this storm, the Sub-Auroral Polarization Stream (SAPS) was identified

by the Millstone Hill Observatory’s incoherent scatter radar (ISR) measurements of

ion drifts [5]. An intense westward zonal ion drift grew to 500 m/s and was sustained

for about six hours. It started at (date/hour) = 17/20 UT and ended around 18/02

UT. After 18/02 UT, the zonal ion drifts slow down and changed direction toward the

east. This direction change, combined with a northward turning in the thermospheric

winds was evidence of the SAPS flow as published by Zhang et al. [5]. The ion drifts

oscillated by changing direction two more times until finally dying down at about

18/08 UT.

To investigate whether GNSS TEC and FPI neutral winds can be used to

estimate strong SAPS-driven zonal winds, I will first use GPS TEC as inputs to

IDA4D, to estimate electron density for 17-19 March 2015. Then the newly estimated

electron densities are finite-differenced in time according to Eq. (3.4) for estimates

of plasma density rates. These plasma density rates are input to EMPIRE as y

to compute estimates of storm-time electric potential as the first configuration of

EMPIRE. In the second configuration, EMPIRE will ingest IDA4D (as in the first

configuration) but also estimate northward neutral winds to produce corrections in

the field-parallel direction as well as the field-perpendicular directions. Finally, the
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third configuration of EMPIRE will ingest IDA4D plasma density rates and FPI

neutral winds to estimate electric potential and northward neutral winds.

To analyze the results, I will show the EMPIRE estimates of field-perpendicular

drifts at the location of Millstone Hill incoherent scatter radar (ISR). These estimates

will be compared to the independent ISR measurements of the ionospheric convection

during this storm, that showed evidence of the SAPS field.

6.1.2 Data. Both the measurements and the background models must be collocated

onto a single grid that EMPIRE uses for assimilation. EMPIRE uses a geomagnetic

grid with -180◦ to 180◦ longitude, 30◦ to 150◦ colatitude and 150 to 650 km altitude

with a spacing of 3 degrees in both latitude and longitude and 50 km spacing in

altitude.

For this study, IDA4D assimilates only Global Positioning System (GPS) satel-

lite measurements of slant TEC and estimates ionospheric plasma density on a 3D

non-uniform grid. The GPS data is provided by 2 networks of GPS receivers run

by Continuously Operating Reference Stations (CORS) and by the University NAV-

igation COnsortium (UNAVCO). Data can be accessed at [54] and [55]. Figure 6.2

shows the GPS ground stations that were assimilated by IDA4D in red and the GPS

satellite ground position in blue for a single time step. As time proceeds, the blue

satellite ground positions are non-stationary while the red GPS receiver dots remain

stationary. IDA4D ingests the satellite-receiver line-of-sight slant TEC measurements

and produces estimates on an irregular grid. The IDA4D data points are not collo-

cated with the EMPIRE grid points. To assimilate IDA4D data into EMPIRE, the

IDA4D data points are trilinear interpolated to EMPIRE’s grid. The IDA4D algo-

rithm runs are configured with the background model data set to 40% weighting and

the measurements with 40% weighting.
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Figure 6.2. IDA4D GPS ground station receivers (red) and satellite transmitter (blue)
locations.
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FPI data are available for this storm from 5 different FPI sites in the American

sector. Their locations are shown in Figure 6.3 with the magenta x’s. The labeled

dots A, B, C, D, and E correspond to the locations of the northward LOS pierce

points which are approximately 250 km north and at an altitude of 250 km above the

FPI locations. The longitude, latitude and site name for each location are shown in

Table 6.1. Figure 6.4 shows each FPI’s northern LOS measurements over the three

days. The white circle corresponds to the location at which the EMPIRE ion drift

results are shown later in Section 6.2.

Table 6.1. FPI Site Ionospheric Pierce Point Locations

Site Name Latitude (North) Longitude (East)

A) Arecibo 20.47 -66.75

B) Millstone Hill Observatory 44.75 -71.45

C) Urbana Astronomical Observatory 42.26 -88.2

D) Pisgah Astronomical Research Institute 37.32 -82.85

E) Eastern Kentucky University 39.87 -84.29

EMPIRE ingests each of the models at the EMPIRE grid point locations

defined in the first paragraph of Section 6.1.2. The models include: NRLMSIS-00,

Weimer 2005, HWM14, IGRF-11 and IRI.

The production and loss models for a given ion species was originally formu-

lated by [30]. When this model is used in EMPIRE, it is simplified and described in

Section 2.1 in [14].

The Weimer 2005 model provides an estimate of the Earth’s electric potential

[56]. Inputs to this model include measurements of the interplanetary magnetic field

(IMF) strength [nT] and orientation and the solar wind’s velocity [km s−1] and solar

wind number density [cm−3]. These measurements are provided by the Advanced

Composition Explorer (ACE) data. Also required are the altitude adjusted corrected

geomagnetic coordinates (AACGM), the magnetic local time and the universal time.
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Figure 6.3. TEC map with FPI sensors (magenta x), measurement locations and the
white circle shows the location where the EMPIRE results are presented, which is
the approximate location of the Millstone Hill ISR beam.
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Figure 6.4. EMPIRE-ingested northern FPI LOS measurements. Site labels are
described in Table 6.1
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The Weimer 2005 model is used along with the IGRF-11 magnetic field model to

calculate the divergence term due to ~E × ~B drift.

The International Geomagnetic Reference Field 11th generation (IGRF-11)

model provides a model of Earth’s geomagnetic field [57]. The inputs to this model

include only the location in geographic coordinates and UTC time of interest.

The Horizontal Wind Model 2014 [20] provides a model of the Earth’s zonal

and meridional thermospheric wind. Its inputs include the 3-hour Ap index.

The gravity model is used for computing the divergence term parallel to the

magnetic field. The model includes the projection of Earth’s acceleration due to

gravity onto the field-parallel direction divided by a collision frequency. The colli-

sion frequency depends on the density of neutral species. The NRLMSISE-00 model

provides the densities [58], and the model for the collision frequency is described in

[14].

The diffusion model is another term that is required for computing the diver-

gence parallel to the magnetic field. The model requires temperatures of the ionized

and neutral species and also inversely depends collision frequency. This model is used

in the same manner as described in [14].

6.1.3 EMPIRE Configurations. This study demonstrates EMPIRE results

for three different independent configurations. The first EMPIRE configuration’s

observations include IDA4D ionospheric plasma density data and its state includes

corrections to electric potential. The second EMPIRE configuration includes the same

observations as the first but its state includes corrections for both electric potential in

the field-perpendicular direction and horizontal neutral winds along the field-parallel

direction. The third EMPIRE configuration includes IDA4D ionospheric plasma den-

sity and FPI LOS neutral wind observations with a state that includes corrections to
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electric potential and northward neutral winds. Figure 6.5 shows the corresponding

measurement models for each run depicted as a block diagram. A block diagram is

a representation of a linear measurement model (e.g., z = Hx). The selection of

these three ingestion schemes allows the influences of each dataset on the EMPIRE

estimation.

For all three EMPIRE configurations, the electric potential is corrected using

scalar spherical harmonic basis functions up to degree l = 5. The second and third

EMPIRE configuration state also includes coefficients for both 5th degree electric

potential spherical harmonics (like the first) and includes 3rd degree northward neutral

wind power series basis functions.

EMPIRE also requires configuration parameters that are specific to a Kalman

filter. The Kalman filter is set such that standard deviations from IDA4D measure-

ments are equal to the error provided by the IDA4D algorithm, which are assumed

independent [29]. The Kalman filter also includes a Gauss-Markov forward model [3].

The Gauss-Markov forward model’s time constant is selected to be τ =7200 seconds.

EMPIRE uses the basis functions, coefficients and models to reconstruct the

storm-time state:

x̂storm = Bstatex̂state + astate (6.1)

I reconstruct the results and provide EMPIRE storm-time corrections located at

(89◦ W, 45◦ N) geographic. This location coincides with measurements of ion drift

velocity taken using the Millstone Hill Observatory’s incoherent scatter radar (ISR).

The results are reconstructed at an altitude of 250 km.

6.2 Results

EMPIRE is used to estimate the ion drifts at the same geographic location
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Figure 6.5. The three EMPIRE measurement models for each configuration. The
terms represented as blocks are explained in Appendix B.
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Figure 6.6. EMPIRE results for the first run. The y-axes shows ion drift velocity in
m/s and x axis shows time. Vertical dashed lines show regions when ISR data is
available. The blue line shows the EMPIRE storm-time update, red shows models
and the yellow line indicate when corrections are being made.

where Millstone Hill ion drifts were provided (47◦ N, −89◦ E geographic latitude and

longitude). The ion drift velocities are expressed in the magnetic field aligned frame

which include the field-perpendicular meridional, field-perpendicular zonal and field-

parallel vector directions. The three different run configurations (runs 1, 2 and 3) are

shown in Figures 6.6, 6.7 and 6.8.

The first results shown in Figure 6.6 show that the three vector directions

during the main phase of the storm (5-23 UT) the ion drifts are most erratic (i.e.,

not smoothly varying). Also, the peak ion drifts occur at the same time in all three

directions with the zonal direction having the largest ion drift of just over -1000
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Figure 6.7. EMPIRE results for the second run. The y-axes shows ion drift velocity
in m/s and x axis shows time. Vertical dashed lines show regions when ISR data is
available. The blue line shows the EMPIRE storm-time update, red shows models
and the yellow line indicates when corrections are being made.

m/s. Shown in the first and second subplots (zonal and meridional), the ion drifts in

the perpendicular directions are non-zero but in the parallel direction they are zero.

This is expected as this first run only corrects the electric potential which drives

only the field-perpendicular drifts. The meridional direction is smaller than the zonal

direction primarily because this direction requires much larger drifts to produce the

same transport. The final subplot shows the parallel corrections and since neutral

winds are not being corrected, there are no corrections in this direction Finally, the

error of the ion drifts is plotted here but are not visible because they are consistently

between 1-10 m/s.
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The differences between run 1 and 2 (see Figure 6.6) are primarily with the

parallel ion drifts. Most of the time, the field-parallel ion drifts are positive (mostly

northward) except during the post-dusk to midnight periods. This neutral wind

direction is significantly different from the model which show mostly negative parallel

drifts except from post-dusk to near midnight. Another difference between run 1 and

2 that from about 18/04UT to 18/10 UT the zonal drifts are positive in run 1 but in

run 2 the zonal drifts are near zero. This positive surge during run 1 is significant and

described in more detail in Section 6.3. Also, run 2 shows the zonal drifts accelerating

negatively at about 18/08 UT and returning to zero at about 18/14 UT. This negative

enhancement does not appear in run 1.

Next, run 3 shows a significant difference between run 1 and 2 in the field-

parallel direction (See Figures 6.6 and 6.7). This is due to the ingestion of FPI data.

Oscillations can be seen only during times which FPI data is made available (i.e.,

during local evening hours). The oscillations are the primary indicator of when FPI

data is made available. These oscillations are non-physical and are due to multiple

FPI site data being ingested. At any given time step (i.e., 10 minute interval) different

FPI sites are available. This causes different time steps to have different results. This

produces an oscillating solution which is purely due to ingestion of data and is non-

physical.

6.3 Discussion

One of the uses of EMPIRE is to extract information about ionospheric phys-

ical drivers from images of the ionosphere itself (i.e., plasma density images from

IDA4D). To assess whether these results, Figure 6.9 compares ion drift measure-

ments taken by the Millstone Hill Observatory (MHO) incoherent scatter radar (ISR)

measurements (originally published in [5]) to the EMPIRE results from run 1. The

meridional ion drifts MHO ISR measurements are very large around the same time
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Figure 6.8. EMPIRE results for the third run. The y-axes shows ion drift velocity in
m/s and x axis shows time. Vertical dashed lines show regions when ISR data is
available. The blue line shows the EMPIRE storm-time update, red shows models
and the yellow line indicate when corrections are being made.
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the MHO ISR zonal drifts become large. At 18/02 UT a SAPs field event greatly

decelerates the ion drifts and then begins accelerating in the eastward direction. This

is an indicator of the SAPS field.

Another indicator of the SAPS field are the neutral winds. There are two

main features of the neutral wind that are indicators of the SAPS feature. First,

the northward surge for sites B,C and D around 18/03 UT coincide with the zonal

ion drifts slowing and changing direction (See Figure 6.4). The northward surge was

explained by Zhang et al. to be due to the Coriolis force which is driven by the zonal

ion drifts [5]. Second, the neutral winds at 18/03 remain westward (see Figure 6.10)

at that same time the zonal ion drifts turn eastward. When ion drifts and neutral

winds are moving in opposite directions this is a clear indication of electric fields

driving the ion drifts more than the neutral wind collisions.

EMPIRE results and the MHO ISR measurements have differences but fol-

low a similar trend. EMPIRE results do a better job at capturing the increasing

intensification of the ISR measurements from 17/16 UT to 17/21 than the Weimer

2005 and IGRF-11 models. Also, EMPIRE estimates larger ion drifts than the model

which is more consistent with measurements (blue) from 18/00 to 18/02. After 18/02

UT, EMPIRE results capture an eastward ion drift that is delayed with respect to

the measurements. The fact that EMPIRE is producing eastward ion drifts but the

model is unable to suggests that there may be information within the IDA4D elec-

tron density rates that contains SAPS field but is not included in the models. If the

ionospheric plasma density rate is driving the eastward ion drift during this time it

is possible that this is a result of the SAPS field but with a time delay.

EMPIRE results in the meridional direction are very small. This could be

due to the fact that ion drifts at mid-latitudes are mostly zonal and therefore cor-

rections are small as well. From 17/14 to the meridional ion drift peak at 17/22 the



82

Figure 6.9. Millstone Hill and modeled perpendicular ion drift results are plotted
along side the results generated from the first configuration of EMPIRE. Millstone
Hill data originally published in [5].
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Figure 6.10. FPI neutral wind measurements during the same period as seen in Fig
6.9. Colored lines show the FPI eastward LOS measurements. Site E (Eastern
Kentucky) data was not available until the 19 March 2015.
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model meridional drifts agree with the ISR measurements on direction and time of

the greatest velocity but does not have a correct magnitude. After 18/00 UT, the

measurements show the meridional ion drifts slowing down to the model values with

some oscillations corresponding to ionospheric waves.

In order to see the difference between EMPIRE runs in detail, Figure 6.11

shows all three of the runs plotted just for the 17/14 to 18/12 UT (i.e., storm-

time). The figure shows minor differences between the runs in the zonal direction

(top subplot) except for after 18/04 UT. Zhang et al., 2015 identified this time as

the same time which the SAPS field is causing ion drifts to accelerate eastward and

neutral winds to be remain westward. Eastward EMPIRE estimated ion drifts only

occurred for run 1. Looking back at Figure 6.6, the corrections after 18/04 UT are

minor. This shows that the Weimer model is doing a good job estimating the ion

drifts at this time however Weimer misses the large positive eastward velocities. The

same goes for the EMPIRE results which are include a single period of eastward

drifts with no momentary turning like shown during 18/04 to 18/07. It is possible

that EMPIRE is unable to resolve the high resolution effects of the SAPS field during

this time and that Weimer is unable to produce an eastward ion drift response at all.

There are several possible causes for why EMPIRE’s results do not match

the ISR measurements. The primary cause is that EMPIRE is not using the ISR

measurements but is inferring them from plasma density images. It can take time for

the ionosphere plasma density to respond if a small time-scale events occur. Even

more-so, EMPIRE does not estimate the ion drifts but rather the electric potential.

In order to obtain more accurate ion drift information, direct ingestion of ISR data

and models of ion drifts would be helpful.

6.4 Conclusions
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Figure 6.11. All three EMPIRE runs plotted for the storm day. The blue line is the
first EMPIRE run, the red is the 2nd and the yellow is the third.
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EMPIRE was modified to use spherical harmonic basis functions for estimating

electric potential, globally. The subsequent ion drifts from these electric potential

corrections were presented for three different EMPIRE configurations. The EMPIRE

configuration which matched the measured MHO ISR measurements the most was

the first one where EMPIRE was configured to use storm-time IDA4D plasma density

rate for estimation of electric potential corrections. As EMPIRE configurations were

changed it was shown that adding neutral wind corrections as a state reduced the

electric potential corrections and therefore also reduced the field-perpendicular ion

drift corrections. Also, adding neutral wind data introduced oscillations because of

different FPI site measurements occurring at different time periods. This suggests

that electric fields were the primary driver at this time. This shows promise toward

providing quality data assimilation estimates that make use of both model data and

measurement data to provide storm-time ionosphere state estimation.
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CHAPTER 7

CONCLUSION

This dissertation has presented a data assimilation algorithm for ingesting

Global Navigation Satellite System (GNSS) plasma density, Fabry-Perot Interferom-

eter (FPI) neutral wind measurements and background ionosphere and thermosphere

models to estimate the physical drivers of the ionospheric plasma density. A study

that is included within this research demonstrates the use of GNSS plasma density

and FPI measurements for producing ion drift estimates during severe geomangetic

storms where sub-auroral polarization steam features are present. The main contri-

butions include 1) Kalman filtering for multi-instrument ingestion, 2) FPI neutral

wind data ingestion, 3) spherical harmonics for global data ingestion and 4) data

assimilation study during the March 17th 2015 severe geomagnetic storm.

7.1 Summary and Discussions

Chapter 3 derived and presented a Kalman filtering approach for assimilating

IDA4D plasma density measurements and background models to estimate ionospheric

drivers. This was an improvement from the previous implementation of weighted-

least-square estimation. The plasma density from IDA4D is finite differenced to

produce the yN term and the background models are summed together to produce a

net background model for the change in plasma density over time or aN . Subtracting

the measurements from the models produced the Kalman filter’s observations, z The

states are basis functions which represent plasma transport drivers over space. These

drivers include electric potential and neutral winds. The mapping matrix is used in

the linear measurement model (z = Hx) is defined using ion continuity equation to

map from the transport driver states to the plasma density rate observations. The
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developed algorithm is a method for ingesting both observations and uncertainty in

those observations to provide estimates of the physical drivers of the ionosphere.

Chapter 4 derived and presented the augmentation of the EMPIRE linear

measurement model to include FPI neutral wind measurements. FPI neutral wind

measurements provided direct information of the thermospheric neutral wind in ge-

ographic east and north directions where previously the ionospheric plasma density

rate only provided estimates of neutral winds in the magnetic field-aligned direc-

tion. Demonstration of these results was carried out by studying the 24 October 2011

geomagnetic storm. Results showed that FPI neutral winds improved neutral wind es-

timation. Ion drift estimates also responded to FPI measurement ingestion such that

only the parallel direction had any noticeable change. This study showed that with

a combination of both FPI neutral winds and GNSS plasma density measurements

EMPIRE can improve estimation of storm-time neutral winds regionally.

Chapter 5 proposed use of spherical in basis functions to allow for estimation of

ion drifts and neutral winds, globally. The changes were in the EMPIRE measurement

model where derivatives of the spherical harmonic basis functions replaced derivatives

of power series basis functions for electric potential. The spherical harmonic basis

function for EMPIRE is unique in that it provides a spherical harmonic fit for electric

potential that is constrained to be constant along the field line. The field lines were

modeled as dipole field lines which restricts EMPIRE to low-mid latitudes so the

L-shell is not too large. Modifying EMPIRE to use the more sophisticated spherical

harmonic basis functions allows the results to be constant along the -180 to 180

boundary and thereby enable estimation of storm-time ionospheric drivers globally.

Chapter 6 demonstrated the EMPIRE algorithm use by ingesting IDA4D

plasma density globally and FPI neutral wind data from 5 different locations and

compared the results to measurements taken by the Millstone Hill (MH) incoherent
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scatter radar (ISR). On 17-18 March 2015, the largest geomagnetic storm of the 24th

solar cycle occurred. The MHO ISR recorded ion drifts with a sustained westward

zonal drift of 1000 m/s for several hours. Three different EMPIRE configurations

were presented: 1) with IDA4D plasma density rate observations for estimating elec-

tric potential corrections, 2) with the same IDA4D plasma density rate observations

but for simultaneously estimating neutral winds and electric potential corrections and

3) with IDA4D plasma density rate and FPI lOS neutral wind observations for esti-

mating simultaneous electric potential and neutral wind corrections. When comparing

to ISR data, the first EMPIRE configuration produced electric potential corrections

that best represented the MHO ISR ion drift measurements. Also, the results sug-

gested that the ionospheric plasma density response to the SAPS field lagged the

electric field driven ion drifts suggesting a possible delay in the ionospheric response

to SAPS fields. Direct ingestion of ion drifts would prove useful when estimating ion

drifts during severe geomagnetic storms. For low-latitude phenomena, the system

is well-prepared to assimilate measurement from the upcoming NASA Ionospheric

Connection Explorer (ICON) mission, since it is global and able to ingest neutral

winds.

7.2 Future Work

7.2.1 Vector Spherical Harmonics for Neutral Wind Estimation. Chapter 4

laid the foundations for assimilating neutral winds into EMPIRE, however estimates

of the neutral wind ionospheric driver are currently fit using power series basis func-

tions. Power series basis functions are insufficient because they are not continuous on

a spherical domain. This requires new basis functions similar to the scalar spherical

harmonic basis functions of Chapter 5 but neutral winds will use vector spherical har-

monics instead. Vector spherical harmonics are an adaptation to spherical harmonics

which produce a set of basis functions that analytically describe an orthogonal set.
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In the case of the ionosphere and thermosphere region, this can be simplified to two

dimensions, North and East.

7.2.2 Smoothing of ingested data.. Chapter 6 showed that when FPI LOS

measurements from different spatially distributed sites can cause disagreements from

one timestep to the next. This results in oscillations in the final estimation because

teh available data changes at each time step. While these oscillations are non-physical

themselves, a mean value will be more representative. To remedy this current limita-

tion of EMPIRE, pre-smoothing the data using an interpolation model can provide

more physically representative results over time.

7.2.3 Ingestion of ion drift measurements.. Chapter 4 and 6 presented two

different studies which demonstrated the use of EMPIRE in estimating storm-time

drivers of the ionosphere. In both studies, EMPIRE showed results of drivers that

are vector quantities and revealed the usefulness of directly ingesting measurements

of the ionospheric drivers (i.e., the states themselves). In the case of Chapter 4, the

study showed that ingestion of FPI LOS neutral wind measurements was crucial in

estimating storm-time neutral winds. In Chapter 6 the lack of ingesting ion drift mea-

surements suggested that ingesting them would be useful. In general, direct ingestion

of an ionospheric state has shown to be useful and one available state could be ion

drifts from incoherent scatter radars or in situ satellite measurements. Augmenting

the EMPIRE algorithm to ingest ion drift measurements will be very helpful when

estimating storm-time states.
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APPENDIX A

EMPIRE KALMAN FILTER MEASUREMENT MODEL MATRICES
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This appendix describes the construction of the matrices HN in Eq. (3.8) and

Hu in Eq. (4.3) that map the states to the observations when using power series basis

functions.

A.1 The Linear Continuity Equation Beginning from Eqs. (3.6), (3.7), and

(2.2), the field-perpendicular drift term correction δaexb will give the matrix HV i as:

δaexb,i = −~∇ · (Nδ~v⊥,i) = −~∇ · (N−
~∇δVi × ~B

B2
) (A.1)

= Hi,V xV (A.2)

HV,i =

[
aR aθ aφ

]
i


bR1 bR2 . . . bRjmax

bθ1 bθ2 . . . bθjmax

bφ1 bφ2 . . . bφjmax


i

(A.3)

bj =

(
Req

RE

)k
(θi − θ0)l(φi)

p (A.4)

j = {1, 2, ..., (kmax + 1)(lmax + 1)(pmax + 1)}} (A.5)

Where for E × B, l and lmax both equal zero for the power on θ. So we can then

define the a and b terms as:

aR = − 1

B2R sin(θ)

(
Bθ
∂N

∂R
− Br

R

∂N

∂θ

)
(A.6)

+
6N cos(I)(1 + cos2(θ))

BR2 sin(θ)(1 + 3 cos2(θ))
(A.7)

aθ =
2BR
tan θ

+Bθ

|B|2R sin3(θ)

∂N

∂φ
(A.8)

aφ = 0 (A.9)

bRj = p

(
Req

RE

)k
(φ)p−1 (A.10)

bθj =
k

RE

(
Req

RE

)k−1

(φ)p (A.11)

bφj = 0 (A.12)
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Where Req = R/(sin2 θ) is the equatorial radius of the field line passing through the

given grid point. The index i is for a given grid point. For brevity, the single index j

is used instead of the index triplet klp as defined in Eq. (A.5).

The field-aligned correction δa|| is assumed to be entirely due to neutral winds,

which are then decomposed into the geographic horizontal meridional and zonal com-

ponents (vertical winds corrections are assumed 0). From Eqs. (2.18) and (3.7) the

divergence may be distributed.

δa|| = −~∇ · (Nδ~v||) (A.13)

= −~∇ ·
(
N(δuN n̂g · b̂)b̂

)
︸ ︷︷ ︸

δauN

−~∇ ·
(
N(δuE êg · b̂)b̂

)
︸ ︷︷ ︸

δauE

(A.14)

Splitting the correction into δauN and δauE,

δauN,i = −
(
~∇ · b̂

)
(NδuN,in̂g · b̂)

−
(
b̂ · ~∇

)
(NδuN,in̂g · b̂) (A.15)

(A.16)

where HuN,i is structured exactly as in Eq. (A.3), but containing the following ele-
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ments instead:

aN = −N cos(D) cos(I)(~∇ · b̂)− cos(D) cos Ib̂ · ~∇N

− N cos(I)b̂ · ~∇(cos(D)) (A.17)

+ N cos(D) cos(I)
sin(I)

2R
(1 + 3 cos2(I)) (A.18)

aR = N cos(D) cos(I) sin(I) (A.19)

aθ = N cos(D)
cos2(I)

R
(A.20)

b0j =

(
R

RE

)k
(θ − θ0)l(φ)p (A.21)

bRj =
k

RE

(
R

RE

)k−1

(θ − θ0)l(φ)p (A.22)

bθj = l

(
R

RE

)k
(θ − θ0)l−1(φ)p (A.23)

Meanwhile for δauE we have:

δauE = −
(
~∇ · b̂

)
(N(δuE êg · b̂)

−
(
b̂ · ~∇

)
(NδuE êg · b̂) (A.24)

= HuE,ixuE (A.25)

where HuE,i is structured exactly as in Eq. (A.3), but containing the following ele-

ments instead:

aN = −N sin(D) cos(I)~∇ · b̂− sin(D) cos(I)b̂ · ~∇N

−N cos(I)b̂ · ~∇(sin(D)) +N sin(D)
sin(I) cos(I)

2R
(1 + 3 cos2(I)) (A.26)

aR = N sin(D) cos(I) sin(I) (A.27)

aθ = N sin(D)
cos2(I)

R
(A.28)
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For HuE,i, the b0j, bRj, bθj are given by Eqs. (A.21)-(A.23).

Finally the HN mapping matrix has been fully defined

HN = [HV HuN HuE
] (A.29)

A.2 Line of Sight Wind Matrix When ingesting neutral wind measurements,

the geographic meridional component of the wind correction δuN in Eq. (4.2) is

modeled as a power series in geomagnetic radius, colatitude and longitude, as in Eq.

(A.10). Then the row matrix HuN for the ith measurement location consists of:

HuN = cos(el) cos(az)bi (A.30)

where the terms bij in bi are as given in Eq. (A.4), and the geographic meridional wind

component δugmer has been projected onto the line of sight direction by multiplying

by cos(el) cos(az).

A similar process is repeated for the geographic zonal component of the wind

correction δuE in Eq. (4.2). The power series matrix in Eq. (A.10) is again con-

structed and scaled by cos(el) sin(az) to project it onto the line of sight direction:

HuE = cos(el) sin(az)bi (A.31)

Now the submatrices in Hu have been defined

Hu =

[
0 HuN HuE

]
(A.32)

where 0 represents a matrix of zeros of the appropriate dimensions.

A.3 Model Covariances used in EMPIRE The model covariance Ra contains
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a variance for each grid point background model. It is user-defined, then represented

in state space for each state term (Eq. 3.12), making it a square matrix with length

of the number of state elements. The model estimate at each grid point is assumed to

be independent and identically distributed (IID). This results in a diagonal matrix.

The covariance matrix for each state term is normalized and then stacked into a single

matrix:

Ra = diag

[
RV Ru

]
(A.33)

The variance on drift speed associated with the Weimer model is set to σ2
V =

(20 km/s)2. The drift values are considered IID and placed along the diagonal of a

square covariance matrix Ra~v of length imax, where the v superscript represents ion

drift space. The electric potential is related to the ion drift as Eq. (5.2) shows, and can

be represented with mapping matrices HV r,HV θ,HV φ which take the gradient and

cross with the magnetic field to obtain each component of the ion drift, respectively, as

indicated by the superscript. These are used to determine the corresponding variance

of the coefficients RaxV in state space.

R̃axV = (HV r)
†Ra~v((HV r)

T )†

+(HV θ)
†Ra~v((HV θ)

T )†

+(HV φ)†Ra~v((HV φ)T )† (A.34)

where the † symbol represents the Moore-Penrose pseudoinverse [59]. We then extract

only the diagonal terms and divide by 3 to normalize for the fact that there are 3

component directions. Next, the variances are normalized as follows:

RaxV =
(2 · 104)2

3max[R̃axV ]
R̃axV (A.35)
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The maximum variance for the modeled geographic meridional horizontal neutral

wind is defined as σ2
uN

=(75 m/s)2. Since the HWM14 model values are considered

as IID they are placed into a diagonal matrix, Ra,uN .

The row arrays bi from Eq. (A.4) can be stacked to produce matrix B repre-

senting the power series factors:

B =



b1

...

bi

...

bimax


(A.36)

So that the model space of u at all gridpoints is given by u = BxuN . Then Ra,uN is

mapped to state space as:

R̃a,xuN = B†Ra,uN (BT )† (A.37)

where B is given in Eq. (A.36). Assuming that the off diagonal terms are negligible,

we extract only the diagonal elements. The final covariance matrix for the meridional

neutral wind, Ra,xuN , is obtained by scaling the covariances as:

Ra,xuN =
752

max[diag[R̃a,xuN ]
diag[R̃a,xuN ] (A.38)

The covariance for the model geographic zonal wind Ra,xuE = Ra,xuN for simplicity

and ease of implementation.
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APPENDIX B

DERIVATION OF SPHERICAL HARMONICS FOR ELECTRIC POTENTIAL

STATE ESTIMATION



99

This derivation shows how I will apply a spherical harmonic function as a

basis function to compute states that correspond to the Earth’s electric potential. It

contains several sections. The first section will show, the general form of a spherical

harmonic function that I will use. The second section will show how I adapt this

function for use with estimating electric potential corrections.

B.1 General Form of a Two Dimensional Scalar Spherical Harmonic Func-
tion

B.1.1 Introduction. The two dimensional (2D) scalar spherical harmonic is given

by:

Ψm
l (θ, φ) =Nm

l P
m
l [θ][cos(mφ) + i sin(mφ)] (B.1)

Nm
l =

√
2l + 1

2π

(l −m)!

(l +m)!
(B.2)

Pm
l (θ) =

(−1)m

2ll!

√
(1− θ2)m

dl+m

dθl+m
(θ2 − 1)l (B.3)

Where:

• l ∈ N0, is the “band class”

• m ∈ [0, l], sub divides the bands and is called the “degree”.

• Nm
l , is a normalization constant

• Pm
l (θ), is the associated Legendre polynomial and is the θ dependent term.

• [cos(mφ) + isin(mφ)], is the harmonic term and is the φ dependent term.

• θ, is geomagnetic colatitude

• φ, is geomagnetic longitude
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Where the spherical harmonic function, Ψm
l (θ, φ), sometimes is represented by Y m

l (θ, φ).

This function is only a function of θ and φ. Due to the orthogonality of Legendre

polynomials (Eq. (B.3)) being defined from -1 to 1 and analysis regions being defined

with colatitude from 0 to π it is common to map the 0 to π domain to the -1 to 1

domain using cos(θ). The Legendre polynomial is then:

Pm
l (cos(θ)) =

(−1)m

2ll!

√
(1− cos2(θ))m

dl+m

d cos(θ)l+m
[
(cos2(θ)− 1)l

]
(B.4)

B.1.2 Applying this to Electric Potential. Starting with Eq A1 from Appendix

A in reference [3]:

δaexb = −~∇ · (Nδ~v⊥) = −~∇ · (N−
~∇δV × ~B

B2
) (B.5)

~∇ =

[
∂

∂r
r̂,

1

r

∂

∂θ
θ̂,

1

r sin(θ)

∂

∂φ
φ̂

]
/gm

(B.6)

− ~∇ · (Nδ~v⊥) = −
(
~∇N · δ~v⊥ +N ~∇ · δ~v⊥

)
(B.7)

Equation (B.7) is a useful identity that will be put to use later. The subscript ‘/gm’

indicates that the unit vectors r̂, θ̂ and φ̂ are apart of the ‘geomagnetic’ reference

frame. The r̂ unit vector is the radial direction (positive facing up away from the

normal to the surface of Earth), θ̂ is the colatitude direction (positive southward from

the geomagnetic north pole) and φ̂ is the longitude direction (positive eastward facing

and completes the right hand). The ~B is the magnetic field, N is the plasma density,

and δV is the correction to Earth’s electric potential. The notation B2 represents the

norm of ~B squared and from now on for clarity I will use B2 to represent the norm

squared. For this application of spherical harmonic functions I will only keep the real

part of the spherical harmonic function (B.1) and I will also add an additional sine

term. This requires two pairs of coefficients for every basis function. The new basis

function will then take the form:
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δV (cos(θ), φ) =
L∑
l=0

l∑
m=0

(
r

Re

)l
Pm
l (cos(θ))[xlmc cos(mφ) + xlms sin(mφ)] (B.8)

Where:

Φm
l (φ) , [xlmc cos(mφ) + xlms sin(mφ)] (B.9)

Defining the basis function δV I have

δV =

(
r

Re

)l
Pm
l (cos(θ))Φm

l (φ) (B.10)

The subscripts c and s correspond to the coefficients multiplying the cosine and

sine terms. Also, I am compacting the function such that the Legendre term, Pm
l ,

automatically contains the normalization constant within it. Also, from now on when

the subscripts l and m are shown it implies a summation as shown in equation (5.1).

B.1.3 Derivatives of δV . The derivatives of the spherical harmonic function will

be needed later in this derivation. Next, I present those gradient functions upfront

for ease of reference later on. The derivative with respect to r is zero for this a 2D

Spherical harmonic function. Later in Section B.2 I will extend the 2D spehrical

harmonic function to 3D using the dipole field line equation to constrain it.

B.1.3.1 Derivative of the basis function with respect to θ (δV(θ)).

∂

δθ
[δV (cos(θ), φ)] =

∂ cos(θ)

∂θ

∂δV

∂ cos(θ)
(B.11)

Where I have used the chain rule. Taking the derivative of cos(θ) with respect to θ

and substituting in (B.10) for δV we have:

∂δV

∂θ
= − sin(θ)

∂

∂ cos(θ)
[Pm
l (cos(θ))Φm

l (φ)] (B.12)
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The derivative with respect to cos(θ) affects only the Pm
l term:

∂δV

∂θ
= − sin(θ)Φm

l (φ)
∂

∂ cos(θ)
[Pm
l (cos(θ))] (B.13)

Where the derivative of a Legendre polynomial will defined in the following manner:

∂

∂ cos(θ)
[Pm
l (cos(θ))] , Pm

l(cθ) (B.14)

dPm
l

d`
=
m`Pm

l − (l +m)(l −m+ 1)
√

1− `2Pm−1
l

1− `2
(B.15)

Where ` = cos θ. This expression has an issue at the degree (i.e., m) endpoint

when m = 0 and therefore m− 1 = −1. Below is what happens when m = 0:

dP 0
l

d`
= − l(l + 1)√

1− `2
P−1
l (B.16)

Negative degree Legendre to their positive counterpart shown below:

P−ml = (−1)m
(l −m)!

(l +m)!
Pm
l (B.17)

Plug (B.17) into (B.16) gives:

dP 0
l

d`
=− [l(l + 1)]√

1− `2

[
(l − 1)!

(l + 1)!

]
P 1
l (B.18)

=− [l(l + 1)]√
1− `2

[
− 1

l(l + 1)

]
P 1
l (B.19)

dP 0
l

d`
=

P 1
l√

1− `2
(B.20)

Therefore, we now have two expressions for Pm
l(`):
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Pm
l(`) =


P 1
l√

1−`2 (m = 0)

muPml −(l+m)(l−m+1)
√

1−`2Pm−1
l

1−`2 (m > 0)

(B.21)

The above expression has a special case for evaluating the derivative of dP 0
l

and the general expression for orders m greater than 0. It is important to use this

expression over others to avoid another end point issue. So the derivative of the basis

function (B.10) with respect to θ is:

δV(θ) = − sin(θ)Pm
l(cθ)Φ

m
l (B.22)

B.1.3.2 Derivative of the basis function with respect to φ (δV(φ)).

∂δV

∂φ
=

∂

∂φ
[Pm
l (cos(θ))Φm

l (φ)] (B.23)

Plugging in (B.9) for Φm
l (φ) and moving all non-φ terms out gives:

∂δV

∂φ
= Pm

l (cos(θ))
∂

∂φ
[xlmc cos(mφ) + xlms sin(mφ)] (B.24)

Applying the derivative gives:

∂δV

∂φ
= Pm

l (cos(θ))m[−xlmc sin(mφ) + xlms cos(mφ)] (B.25)

Where now I can define Φm
l(φ):

Φm
l(φ) = m[−xlmc sin(mφ) + xlms cos(mφ)] (B.26)

Now I can define the derivative of the basis function δV with respect to φ as shown
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below:

δV(φ) = Pm
l Φm

l(φ) (B.27)

B.1.3.3 Second derivative of the basis function with respect to θ and φ,

(δV(θ,φ)). Another term that will be needed often is the second partial derivative of

δV with respect to φ and θ, I show this below:

∂2δV

∂φ∂θ
=

∂2

∂φ∂θ
[Pm
l Φm

l ] (B.28)

Applying the derivative to the appropriate terms:

∂2δV

∂φ∂θ
=
∂Pm

l

∂θ

∂Φm
l

∂φ
(B.29)

Using equations (B.21) and (B.26) and defining δV(θφ) we have:

δV(θ,φ) = − sin(θ)Pm
l(cθ)Φ

m
l(φ) (B.30)

B.1.3.4 Summary of Derivatives. Equations (B.10), (B.22), (B.26) and (B.30)

define the basis function and some derivatives. They are summarized in Table B.1.

Table B.1. Basis Function & Derivatives

δV = Pml Φm
l (B.10)

Pml (cos(θ)) = (−1)m

2ll!

√
(1− cos2(θ))m dl+m

d cos(θ)l+m

[
(cos2(θ)− 1)l

]
(B.4)

Φm
l (φ) , [xlmc cos(mφ) + xlms sin(mφ)] (B.9)

δV(θ) = − sin(θ)Pml(cθ)Φ
m
l (B.22)

δV(φ) = Pml Φm
l(φ) (B.27)

δV(θ,φ) = − sin(θ)Pml(cθ)Φ
m
l(φ) (B.30)

Pml(`) =
muPml −(l+m)(l−m+1)

√
1−`2Pm−1

l
1−`2 (B.15)

Φm
l(φ) = m[−xlmc sin(mφ) + xlms cos(mφ)] (B.26)

There are three mathematical operations that must be done on δV to produce
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an expression for δaexb I have listed them below:

1. Take the gradient of δV to produce: ~∇V =

[
δV(r)r̂, δV(θ)θ̂, δV(φ)φ̂

]
2. Compute the ion drift: δ~v⊥ = −~∇V× ~B

B2

3. Compute the convection term: ~∇ · (Nδ~v⊥)

These three steps are completed in Sections B.1.4, B.1.5 and B.1.6 below.

B.1.4 Definition of ~∇δV . Using Eq. (B.6) I operate on (B.10):

~∇δV =

[
∂

∂r
r̂,

1

r

∂

∂θ
θ̂,

1

r sin(θ)

∂

∂φ
φ̂

]
[Pm
l (cos(θ))Φm

l (φ)] (B.31)

B.1.4.1 Applying the r̂ operator. There are no r variables in the expression for

δV so the derivative with respect to r is equal to zero.

δV(r) = 0 (B.32)

B.1.4.2 Applying the θ̂ operator.

1

r

∂

∂θ
[δV ]]θ̂ =

1

r
δV(θ)θ̂ (B.33)

As a reminder by using Eq. (B.22) we have:

1

r
δV(θ)θ̂ =

− sin(θ)

r
Pm
l(cθ)Φ

m
l θ̂ (B.34)

B.1.4.3 Applying the φ̂ operator.

1

r sin(θ)

∂

∂φ
[δV ]φ̂ =

1

r sin(θ)
δV(φ)φ̂ (B.35)
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Where the expression for δV(φ) (B.27) is shown below as a reminder:

1

r sin(θ)
δV(φ)φ̂ =

m

r sin(θ)
Pm
l Φ(θ)φ̂ (B.36)

Equations (B.32), (B.34) and (B.35) and form the gradient of δV : ~∇δV =[
0r̂, 1

r
δV(θ)θ̂,

1
r sin(θ)

δV(φ)φ̂

]
. Now I may begin the next step of computing the mag-

netic field perpendicular ion drifts, δ~v⊥.

B.1.5 Defining δ~v⊥. Evaluating all components to ~∇δV means I have also de-

termined the electric field term, δ ~E = −~∇δV . Now I can determine the form of

(δ ~E × ~B)/B2. I model the Earth’s magnetic field strength in the φ̂ direction as zero

for a dipole in magnetic field coordinates. I have the following two expressions for ~B

and −~∇V :

~B = [Brr̂, Bθθ̂, 0φ̂] (B.37)

δE = −~∇V =

[
0r̂, −1

r
δV(θ)θ̂, − 1

r sin(θ)
δV(φ)φ̂

]
(B.38)

Taking the cross product between δ ~E and ~B gives:

δ~v⊥ = ( ~δE × ~B)/B2 =
1

B2

[
Bθ

r sin(θ)
δV(φ)r̂ − Br

r sin(θ)
δV(φ)θ̂

Br
r
δV(θ)φ̂]

]
(B.39)

B2 = B2
r +B2

θ (B.40)

Where I used B2 to represent B2 for simplifying the notation. Computation of equa-

tion (B.39) was the goal of this section. It represents the field perpendicular ion drift

velocities (δ~v⊥) expressed in geomagnetic coordinates. For now, it is best to leave this

in symbolic form. In the next step I will apply the necessary derivatives and expand

there.

B.1.6 Definition of: ~∇ · (Nδ~v⊥). Now I can use equation (B.39) and the spherical
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del operator to compute the final step. First I distribute the ~∇ operator as shown in

Eq. (B.7). The first term of Eq. (B.7) (−~∇N · δ~v⊥) is the gradient of the plasma

density

[
∂N
∂r
r̂, 1

r
∂N
∂θ
θ̂, 1

r sin(θ)
∂N
∂φ
φ̂]

]
dotted with δ~v⊥. The gradient of plasma ~∇N is

already done in previous work [3]. The 2nd term (−N ~∇ · δ ~v⊥) is broken down into

three terms and will be evaluated separately in the following subsections. Next, I

show the divergence of a vector using the spherical del operator applied to a general

vector, ~A, in spherical coordinates:

~∇ · ~A =
1

r2

∂(r2Ar)

∂r
+

1

r sin(θ)

∂(sin(θ)Aθ))

∂θ
+

1

r sin(θ)

∂Aφ
∂φ

(B.41)

Where ~A =

[
Arr̂, Aθθ̂, Aφφ̂

]
. Next I show this when applied to δ ~E.

−N ~∇ · δ~v⊥ =−
N

r2B2

∂

∂r

[
r2

(
Bθ

r sin(θ)
δV(φ)

)]
︸ ︷︷ ︸

r term

− N

r sin(θ)B2

∂

∂θ

[
sin(θ)

(
− Br

r sin(θ)
δV(φ)

)]
︸ ︷︷ ︸

θ term

− N

r sin(θ)B2

∂

∂φ

[
Br

r
δV(θ)

]
︸ ︷︷ ︸

φ term

 (B.42)

Where I have assumed that the Earth’s magnetic field ~B does vary with space. This

is an assumption and this algorithm can me modified later to include these changes

as well.

B.1.6.1 The r Term. Canceling the r:

− N

r2B2

∂

∂r

[
r

(
Bθ

sin(θ)
δV(φ)

)]
(B.43)
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Applying the derivative:

The r term = − NBθ

r2B2 sin(θ)
δV(φ) (B.44)

B.1.6.2 The θ Term. As a reminder the θ term from Eq. (B.42) is:

− N

r sin(θ)B2

∂

∂θ

[
sin(θ)

(
− Br

r sin(θ)
δV(φ)

)]
(B.45)

Canceling the sin(θ) and applying the derivative to δV(φ) gives:

− N

r sin(θ)B2

[
−Br

r
δV(φ,θ)

]
(B.46)

I can stop here and define the θ term because δV(θ,φ) was defined previously as Eq.

(B.30).

The θ term =
BrN

r2 sin(θ)B2
δV(φ,θ) (B.47)

B.1.6.3 The φ Term. As a reminder, the φ term in equation (B.42) is:

− N

r sin(θ)B2

∂

∂φ

[
Br

r
δV(θ)

]
(B.48)

Distributing the derivative and moving all non-φ terms out:

− BrN

r2 sin(θ)B2

∂

∂φ
δV(θ) (B.49)

Using equation (B.30) for δV(θ,φ) defines the φ term:

The φ term = − Br

r2 sin(θ)B2
δV(θ,φ) (B.50)

B.1.7 Summary. Summing all three of the terms (Eqs. (B.44), (B.47) and (B.50))
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and applying the negative sign this gives us the analytic form for corrections to the

divergence of plasma, Eq. (B.5):

δaexb = −~∇ · (Nδ~v⊥) = − NBθ

r2B2 sin(θ)
δV(φ)︸ ︷︷ ︸

The r term

+
BrN

r2 sin(θ)B2
δV(φ,θ)︸ ︷︷ ︸

The θ term

− BrN

r2 sin(θ)B2
δV(θ,φ)︸ ︷︷ ︸

The φ term

(B.51)

− N
B2

[
( Bθ
r sin(θ)

δV(φ))r̂ −( Br
r sin(θ)

δV(φ))θ̂ (Br
r
δV(θ))φ̂

]
·
[
∂N
∂r
r̂ 1

r
∂N
∂θ
θ̂ 1

r sin(θ)
∂N
∂φ
φ̂

]
︸ ︷︷ ︸

δ~v⊥·~∇N

The 2nd and 3rd terms cancel to get:

δaexb = −~∇ · (Nδ~v⊥) = − NBθ

r2B2 sin(θ)
δV(φ)︸ ︷︷ ︸

The r term

− N
B2

[
( Bθ
r sin(θ)

δV(φ))r̂ −( Br
r sin(θ)

δV(φ))θ̂ (Br
r
δV(θ))φ̂

]
·
[
∂N
∂r
r̂ 1

r
∂N
∂θ
θ̂ 1

r sin(θ)
∂N
∂φ
φ̂

]
︸ ︷︷ ︸

δ~v⊥·~∇N

(B.52)

At this point I have determined the final form of δaexb as a function of θ and φ

however, this is only a two dimensional function. If one is to model Earth as a three

dimensional system then one approach is to assume Earth’s magnetic field is a dipole.

This allows us to make use of the equation of a field line to define a three dimensional

system with one constraint. Thereby we are reducing the degrees of freedom by

one and we effectively have two variables and we may retain two term in our basis
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function. How this is done is described in the following section.

B.2 Extending the Spherical Harmonic Basis Function to Three Dimen-
sions Using the Equation for a Dipole Field Line

For the electric potential of Earth, it is known that the potential is constant

along a field line. Where now the voltage V will be defined as a function of Req and

φ instead of cos(θ) and φ. Our new basis function has been modified from (B.10)

below:

δV = Pm
l (Req)Φ

m
l (φ) (B.53)

Where the equatorial radius (Req) for a dipole is:

Req =
r

sin2[θ]
(B.54)

Where Req is the location at which a dipole field line crosses the geomagnetic equator

in meters. Using this definition, it can be proven that the gradient of the potential

along a field line is zero (possibly add this section later).

B.2.1 Derivatives of δV , Field Line. The derivatives of δV will now include

a change with respect to r. Below I add those relevant derivatives to Table B.1.

B.2.1.1 Derivative with respect to r.

∂δV

∂r
=
∂δV

∂Req

∂Req

∂r
(B.55)

Where:

∂Req

∂r
=

1

sin2(θ)
(B.56)

and

∂δV

∂Req

= δV(Req) = Pm
l(Req)Φ

m
l (B.57)
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Previously, Pm
l(`) was defined as equation (B.15) with cos(θ) as the argument. Now we

substitute in Req in place of cos(θ) and the form of the equation remains the same:

Pm
l(Req) =

1

2
√

1−R2
eq

[
(l +m)(l −m+ 1)Pm−1

l − Pm+1
l

]
(B.58)

We can define the derivative of

δV(r) =
δV(Req)

sin2(θ)
(B.59)

B.2.2 Derivative with Respect to θ.

∂δV

∂θ
=
∂δV

∂Req

∂Req

∂θ
(B.60)

Where

∂Req

∂θ
= − 2r

tan(θ) sin2(θ)
(B.61)

Where we can define the basis function’s derivative with respect to θ as:

∂δV

∂θ
= − 2r

tan(θ) sin2(θ)
δV(Req) (B.62)

Some alternate forms that may be useful are:

∂δV

∂θ
= − 2Req

tan(θ)
δV(Req) = − 2r

tan(θ)
δV(r) (B.63)

I will choose to use the relationship with respect to δV(r)

δV(θ) = − 2r

tan(θ)
δV(r) (B.64)

B.2.2.1 Second Derivative with Respect to r and φ. Another derivative that
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will be used is the second derivative of the basis function (B.10) with respect to r

and φ. I start with the derivative with respect to r, δV(r) and I take the derivative

with respect to φ:

∂δV(r)

∂φ
=

∂

∂φ

[
Pm
l(Req)

Φm
l

sin2(θ)

]
(B.65)

using equation (B.26) for
∂Φml
∂φ

I have defined δV(r,φ):

δV(r,φ) =
Pm
l(Req)

Φm
l(φ)

sin2(θ)
(B.66)

B.2.2.2 Second Derivative with Respect to θ and φ. To be complete, I

present the form of the 2nd derivative of δV with respect to θ and φ. I start with the

derivative with respect to θ and then take the derivative with respect to φ

∂δV(θ)

∂φ
= − ∂

∂φ

[
2r

tan(θ)
δV(r)

]
(B.67)

δV(θ,φ) = − 2r

tan(θ)

Pm
l(Req)

Φm
l(φ)

sin2(θ)
(B.68)

δV(θ,φ) = − 2r

tan(θ)
δV(r,φ) (B.69)

B.2.2.3 Summary of Derivatives. Table B.2 shows all the derivatives and is

updated with the two new derivatives:

Next I will define the gradient of δV

B.2.3 Definition of ~∇δV .

B.2.3.1 Applying the r̂ Operator. This time, there are terms that are a function

of r. I can simply use the previously defined derivative (B.59) shown in Table B.2:

∂δV

∂r
r̂ = δV(r)r̂ (B.70)
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Table B.2. Basis Function & Derivatives Continued

δV = Pml Φm
l (B.10)

Pml (`) = (−1)m

2ll!

√
(1− `2)m dl+m

d`l+m

[
(`2 − 1)l

]
(B.4)

Φm
l (φ) , [xlmc cos(mφ) + xlms sin(mφ)] (B.9)

δV(θ) = − 2r
tan(θ)δV(r) (B.64)

δV(r) =
δV(Req)

sin2(θ)
(B.59)

δV(Req) = Pml(Req)Φ
m
l

Pml(Req) = 1

2
√

1−R2
eq

[
(l +m)(l −m+ 1)Pm−1

l − Pm+1
l

]
(B.58)

δV(φ) = Pml Φm
l(φ) (B.27)

Φm
l(φ) = m[−xlmc sin(mφ) + xlms cos(mφ)] (B.26)

δV(θ,φ) = − 2r
tan(θ)δV(r,φ) (B.68)

δV(r,φ) =
Pm
l(Req)

Φm
l(φ)

sin2(θ)
(B.66)

B.2.3.2 Applying the θ̂ Operator.

1

r

∂

∂θ
[δV ]θ̂ =

1

r
δV(θ)θ̂ (B.71)

As a reminder by using Eq. (B.22) we have:

1

r
δV(θ)θ̂ = − 2

tan(θ)
δV(r)θ̂ (B.72)

B.2.3.3 Applying the φ̂ Operator. Using equation (B.27) we have the φ operator

1

r sin(θ)

∂

∂φ
[δV ]φ̂ =

1

r sin(θ)
δV(φ)φ̂ (B.73)

B.2.3.4 Definition of δ ~E. The definition of electric field is the negative gradient

of the electric potential. Equations (B.70), (B.72) and (B.73) and form the gradient

of δV : ~∇δV =

[
δV(r)r̂,

1
r
δV(θ)θ̂,

1
r sin(θ)

δV(φ)φ̂

]
. Therefore, δ ~E and is defined below:
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δ ~E =

[
−δV(r)r̂, −1

r
δV(θ)θ̂, − 1

r sin(θ)
δV(φ)φ̂

]
(B.74)

δ ~E =

[
Er r̂, Eθ θ̂, Eφ φ̂

]
(B.75)

Now I may begin the next step of computing the magnetic field perpendicular

ion drifts, δ~v⊥.

B.2.4 Computing δ~v⊥ (3D). Now I compute δ~v⊥ just as it was done in Section

B.1.5.

δ~v⊥ =
−~∇δV × ~B

||B2||
=
δ ~E × ~B

||B2||
(B.76)

− ~∇V × ~B =

[
−δV(r)r̂, −1

r
δV(θ)θ̂, − 1

r sin(θ)
δV(φ)φ̂

]
×
[
Brr̂ Bθθ̂ 0

]
(B.77)

Crossing the two terms gives:

δ~v⊥ =
1

B2

[
1

r sin(θ)
δV(φ)Bθr̂ − 1

r sin(θ)
δV(φ)Brθ̂ (1

r
δV(θ)Br − δV(r)Bθ)φ̂

]
(B.78)

Now I can compute the divergence.

B.2.5 Creating a Matrix H(exb) for δaexb by Defining A and B Submatrices

and Using the CTIP Model for ~∇·δ~v⊥. I can define the H matrix by defining two

submatrices A and B. Where submatrix A contains all physics and the divergence

operators and submatrix B contains only first derivative operators on the given basis

functions. The idea is to separate the terms so those terms that are specific to the

chosen basis function are separated from those terms that are general for any chosen

basis function. Starting with the definition of δaexb we have:

δaexb = −δ~v⊥ · ~∇N −N ~∇ · δ~v⊥ (B.79)
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Where by using the CTIP model as explained in [15] (see Eq. (25) therein) we can

define an expression for the 2nd term ~∇ · δ~v⊥ as shown below:

~∇ · ~v⊥ =
6Eφ cos I(1 + cos2 θ)

|| ~B||r(1 + 3 cos2 θ)
(B.80)

Where, Eφ, is the electric field vector component in the longitudinal direction or φ̂

direction and I is the dip angle defined by:

cos I =
sin θ√

1 + 3 cos2 θ
(B.81)

I can substitute the expression for Eφ as defined by (B.75) to get an expression with

a derivative of the basis function:

~∇ · ~v⊥ = −
6δV(φ) cos I(1 + cos2 θ)

|| ~B||r2 sin θ(1 + 3 cos2 θ)
(B.82)

Now I may use Eq. (B.82) with the definition for δaexb shown in Eq. (B.79).

δaexb = −δ~v⊥ · ~∇N +N
6δV(φ) cos I(1 + cos2 θ)

|| ~B||r2 sin θ(1 + 3 cos2 θ)
(B.83)

Now I must add in the expression for −δ~v⊥ · ~∇N which is:

− δ~v⊥ · ~∇N =

− 1

B2

[
Bθ
r sin θ

∂N
∂r
δV(φ) − Br

r2 sin θ
∂N
∂θ
δV(φ) + Br

r2 sin θ
∂N
∂φ
δV(θ) − Bθ

r sin θ
∂N
∂φ
δV(r)

] (B.84)

Using the expression from eq. (B.64) for δV(θ) in terms of δV(r):

δV(θ) = − 2r

tan θ
δV(r) (B.85)
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Plugging the above expression into Eq. (B.84) gives:

− δ~v⊥ · ~∇N =

− 1

B2

[
Bθ
r sin θ

∂N
∂r
δV(φ) − Br

r2 sin θ
∂N
∂θ
δV(φ) − 2Br

r tan θ sin θ
∂N
∂φ
δV(r) − Bθ

r sin θ
∂N
∂φ
δV(r)

] (B.86)

For simplification I pull a 1
r sin θ

term out:

− δ~v⊥ · ~∇N =

− 1

B2r sin θ

[
Bθ

∂N
∂r
δV(φ) − Br

r
∂N
∂θ
δV(φ) − 2Br

tan θ
∂N
∂φ
δV(r) −Bθ

∂N
∂φ
δV(r)

] (B.87)

Now I may organize like terms of the derivatives of δV :

−δ~v⊥ · ~∇N = − 1

B2r sin θ

[(
Bθ

∂N
∂r
− Br

r
∂N
∂θ

)
δV(φ) −

(
2Br
tan θ

+Bθ

)
∂N
∂φ
δV(r)

]
(B.88)

Now I may add together Eq. (B.88) and (B.82) to get a form for δaexb

δaexb = − 1

B2r sin θ

[(
Bθ

∂N
∂r
− Br

r
∂N
∂θ

)
δV(φ) −

(
2Br
tan θ

+Bθ

)
∂N
∂φ
δV(r)

]
+

6NδV(φ) cos I(1 + cos2 θ)

|| ~B||r2 sin θ(1 + 3 cos2 θ)

(B.89)

Again, reorganizing in terms of derivatives of δV :

δaexb =[
− 1

B2r sin θ

(
Bθ
∂N

∂r
− Br

r

∂N

∂θ

)
+

6N cos I(1 + cos2 θ)

|| ~B||r2 sin θ(1 + 3 cos2 θ)

]
︸ ︷︷ ︸

=a1

δV(φ)

+
1

B2r sin θ

(
2Br

tan θ
+Bθ

)
∂N

∂φ︸ ︷︷ ︸
=a2

δV(r)

(B.90)

Where I have defined the a1 and a2 terms that are analogous to the terms shown in
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[15]. There is only one difference and that is a 1
sin2θ

term that is pulled out of the

derivative of the power series basis function with respect to r. For spherical harmonics

that 1
sin2 θ

term does not come out the same. Next, I can expand the derivative terms

by plugging in Eqs. (B.59) and (B.27)

δaexb = a1P
m
l Φm

l(φ) − a2

δV(Req)

sin2(θ)
(B.91)

Plugging in Eq. (B.57) for δV(Req):

δaexb = a1P
m
l Φm

l(φ) + a2

Pm
l(Req)

Φm
l

sin2(θ)
(B.92)

Plugging in Eqs. (B.26) and (B.9) to expand the terms containing the coefficients to

be solved for:

δaexb = a1P
m
l m[−xlmc sin(mφ)+xlms cos(mφ)]+a2

1

sin2(θ)
Pm
l(Req)[x

lm
c cos(mφ)+xlms sin(mφ)]

(B.93)

I can rearrange the above equation and define b terms:

δaexb = a1

−mPm
l sin(mφ)︸ ︷︷ ︸
=blm1c

xlmc +mPm
l cos(mφ)︸ ︷︷ ︸

=blm1s

xlms



+ a2

 1

sin2(θ)
Pm
l(Req)cos(mφ)︸ ︷︷ ︸
=blm2c

xlmc +
1

sin2(θ)
Pm
l(Req)sin(mφ)︸ ︷︷ ︸
=blm2s

xlms

 (B.94)

With the definition of a1, a2, blm1c , blm1s , blm2c and blm2s we may express δaexb as:

δaexb = a1

[
blm1c x

lm
c + blm1s x

lm
s

]
+ a2

[
blm2c x

lm
c + blm2s x

lm
s

]
(B.95)

Given that there are multiple grid points we may represent this as two matrices A
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and B where A is defined as:

A =

[
a1 a2

]
i

(B.96)

and B as:

B =

b10
1c b11

1c · · · blm1c

b10
2c b11

2c · · · blm2c

∣∣∣∣∣∣∣∣
b10

1s b11
1s · · · blm1s

b10
2s b11

2s · · · blm2s


i

(B.97)

So now we may represent δaexb as:

δaexb = Hx = ABx

=

[
a1 a2

]
i

b10
1c b11

1c · · · blm1c

b10
2c b11

2c · · · blm2c

∣∣∣∣∣∣∣∣
b10

1s b11
1s · · · blm1s

b10
2s b11

2s · · · blm2s


i



x10
c

x11
c

...

xlmc

x10
s

x11
s

...

xlms



(B.98)

Where A and B is equal to our mapping matrix H. The Table B.3 shows the

terms I have just defined for quick reference.

B.3 Using L-shell for the Legendre Polynomial’s Independent Variable
and Mapping it to a Domain from -1 to 1

The Legendre Polynomials are defined from -1 to 1. As such, the MATLAB

function (legendre.m) for computing them requires them to be from -1 to 1. Rather
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Table B.3. Term for the H matrix using A and B Matrices

H = AB

A =
[
a1 a2

]
i

(B.96)

a1 = − 1
B2r sin θ

(
Bθ

∂N
∂r −

Br
r
∂N
∂θ

)
+ 6N cos I(1+cos2 θ)

|| ~B||r2 sin θ(1+3 cos2 θ)
(B.90)

a2 = − 1
B2r sin θ

(
2Br
tan θ +Bθ

)
∂N
∂φ (B.90)

B =

[
b10
1c b11

1c · · · blm1c

b10
2c b11

2c · · · blm2c

∣∣∣∣∣b10
1s b11

1s · · · blm1s

b10
2s b11

2s · · · blm2s

]
i

(B.97)

blm1c = −mPml sin(mφ) (B.94)

blm1s = mPml cos(mφ) (B.94)

blm2c = 1
sin2(θ)

Pml(Req)cos(mφ) (B.94)

blm2s = 1
sin2(θ)

Pml(Req)sin(mφ) (B.94)

x =

[
xlmc

xlms

]
(B.98)

than rewriting the Legendre polynomial to accept different ranges it will be faster to

just use a scalar mapping to map our domain to -1 to 1.

A linear scaling mapping function maps two points in a domain to two other

points. In our case we want to map the lower and upper limit of the L-shell range to

-1 and 1, respectively. A general linear scaling mapping function looks like:

f(x) = C +
C −D
B − A

A+
D − C
B − A

x (B.99)

f Where A and B are the minimum L-shell (Lmin) and maximum L-shell (Lmax), C

and D are the minimum and maximum of the new domain (i.e., -1 and 1), x is the L-

shell, L and f(x) is the ` that is the independent variable of the Legendre polynomial.

Our linear scaling mapping function is:

` = −1 +
−2

Lmin − Lmax
Lmin +

2

Lmax − Lmin
L (B.100)

Since our grid may change, this function will change automatically based on the
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minimum and maximum L-shell is for any given run.

Next, I will define the function for L-shell:

L(Re, r, θ) =
(r +Re)

Re sin2(θ)
(B.101)

Now that we have these definitions for the argument ` inside the legendre polynomial

new terms will arise when performing derivatives. The next subsections will redefine

the relevant derivatives for the final mapping matrix.

B.3.1 Derivatives of δV . The derivatives of δV will contain new terms because

of the scaling function and L-shell definitions. So first I will take the derivative of the

scaling function with respect to r and θ:

∂`

∂r
=
∂`

∂L

∂L

∂r
(B.102)

=
1

Re sin2(θ)

∂`

∂L
(B.103)

∂`

∂r
=

1

Re sin2(θ)

2

Lmax − Lmin
(B.104)

and now the θ derivative

∂`

∂θ
=
∂`

∂L

∂L

∂θ
(B.105)

=
−2(r +Re)

Re tan(θ) sin2(θ)

∂`

∂L
(B.106)

∂`

∂θ
=

−2(r +Re)

Re tan(θ) sin2(θ)

2

Lmax − Lmin
(B.107)

With the above definitions of ∂`/∂r and ∂`/∂θ we can now include the new

terms for each of the derivatives of the basis function δV . Note that the derivative

with respect to φ remains the same as before so I will only be presenting that of r



121

and θ

B.3.1.1 Derivatives with respect to r. Using the new derivative (B.104) δVr is

now defined as:

∂δV

∂r
=
∂δV(r)

∂`

∂`

∂r
(B.108)

δV(r) =
1

Re sin2(θ)

2

Lmax − Lmin
Pm
l(`)Φ

m
l (B.109)

We can further unpack (B.109) using equation (B.15) shown later. B.3.1.2 Deriva-

tives with respect to θ. Using the new derivatives (eq. (B.107)) δV(θ) is now

defined as:

∂δV(θ)

∂θ
=
∂δV(θ)

∂θ
(B.110)

=
∂δV(θ)

∂`

∂`

∂θ
(B.111)

=
−2(r +Re)

tan(θ)

2

Lmax − Lmin
1

Re sin2(θ)︸ ︷︷ ︸
∂`
∂θ

Pm
l(`)Φ

m
l︸ ︷︷ ︸

∂δV(θ)
∂`

(B.112)

Finally δV(θ) in its most compact form:

δV(θ) = −2(r +Re)

tan(θ)
δV(r) (B.113)

This is the last derivative that will be modified from using the linear scaling matrix

to scale the L-shell range to a -1 to 1 range. With the derivatives of the potential we

have defined the electric field and thus with the magnetic field vector we may define

the field perpendicular ion drifts just as it is done in Section B.1.5.

B.3.1.3 Modifications to the Divergence. We can draw from work done in

Section B.2.5 to continue modifying only what is necessary. Beginning with equation
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(B.90) we have:

δaexb =

[
− 1

B2r sin θ

(
Bθ
∂N

∂r
− Br

r

∂N

∂θ

)
+

6N cos I(1 + cos2 θ)

|| ~B||r2 sin θ(1 + 3 cos2 θ)

]
δV(φ)

+
1

B2r sin θ

(
2Br

tan θ
+Bθ

)
∂N

∂φ
δV(r)

(B.114)

We must recognize that the value of r is not the height from the Earth’s surface but

that from the center of Earth or r + Re ,the same as it is defined for the L-shell. So

I must make the necessary correction to the above equation for that:

δaexb =[
−1

B2(r +Re) sin θ

(
Bθ
∂N

∂r
− Br

(r +Re)

∂N

∂θ

)
+

6N cos I(1 + cos2 θ)

|| ~B||(r +Re)2 sin θ(1 + 3 cos2 θ)

]
︸ ︷︷ ︸

=a1

δV(φ)

+
1

B2(r +Re) sin θ

(
2Br

tan θ
+Bθ

)
∂N

∂φ︸ ︷︷ ︸
=a2

δV(r)

(B.115)

From here we again define a1 and a2 and plug in the derivatives of δV . However, the

derivative δV(r) is different because of the new scaling and so we have:

δaexb = a1P
m
l Φm

l(φ) + a2
2

Re sin2(θ)(Lmax − Lmin)
Pm
l(`)Φ

m
l (B.116)

At this point we unpack the Φm
l term and collect like terms of coefficients as done

before.

δaexb = a1P
m
l m[−xlmc sin(mφ) + xlms cos(mφ)]

+ a2
2

Re sin2(θ)(Lmax − Lmin)
Pm
l(Req)[x

lm
c cos(mφ) + xlms sin(mφ)]

(B.117)
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I can rearrange the above equation and define b terms:

δaexb = a1

−mPm
l sin(mφ)︸ ︷︷ ︸
=blm1c

xlmc +mPm
l cos(mφ)︸ ︷︷ ︸

=blm1s

xlms


+ a2

[
2

Re sin2(θ)(Lmax − Lmin)
Pm
l(`)cos(mφ)︸ ︷︷ ︸

=blm2c

xlmc

+
2

Re sin2(θ)(Lmax − Lmin)
Pm
l(`)sin(mφ)︸ ︷︷ ︸

=blm2s

xlms



(B.118)

From here, I follow the same steps that take us from Eq. (B.95) up to the definition

of H in Eq. (B.98). I need not repeat the steps because they are identical. Lastly,

I have updated the summary table below (Table to include the new definitions of

derivatives:

B.4 Corrections to Earth’s Electric Field

In this section I describe how updates to electric fields are computed by for-

mulating mapping matrices that map from coefficients to electric field to ion drifts.

First, we start with the definition of each derivative to form the electric field vector, ~E

using Equations B.109, B.113 and B.27 for the gradients of the electric potential cor-

rections. The electric field vector will be defined as a 3× i matrix where i corresponds

to a grid point index. 
~Er

~Eθ

~Eφ


=


−δV(r)

− 1
(r+Re)

δV(θ)

− 1
(r+Re) sin(θ)

δV(φ)


(B.119)

Where each correction to the derivative of the basis functions can be expressed as

sub matrices Hr, Hθ and Hφ that map the coefficients to electric potential vector.
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Table B.4. Summary: Terms for defining H and x

δV = Pml Φm
l (B.10)

Pml (`) = (−1)m

2ll!

√
(1− `2)m dl+m

d`l+m

[
(`2 − 1)l

]
(B.4)

Φm
l (φ) = [xlmc cos(mφ) + xlms sin(mφ)] (B.9)

δV(θ) = −2(r+Re)
tan(θ) δV(r) (B.113)

δV(r) = 1
Re sin2(θ)

2
Lmax−Lmin δV(`) (B.109)

δV(`) = Pml(`)Φ
m
l

Pml(`) =
m`Pml −(l+m)(l−m+1)

√
1−`2Pm−1

l
1−`2 (B.15)

P 0
l(`) =

P 1
l√

1−`2 (B.20)

δV(φ) = Pml Φm
l(φ) (B.27)

Φm
l(φ) = m[−xlmc sin(mφ) + xlms cos(mφ)] (B.26)

H = AB

A =
[
a1 a2

]
i

(B.96)

a1 = − 1
B2(r+Re) sin θ

(
Bθ

∂N
∂r −

Br
(r+Re)

∂N
∂θ

)
+ 6N cos I(1+cos2 θ)

|| ~B||(r+Re)2 sin θ(1+3 cos2 θ)
(B.90)

a2 = − 1
B2(r+Re) sin θ

(
2Br
tan θ +Bθ

)
∂N
∂φ (B.90)

B =

[
b10
1c b11

1c · · · blm1c

b10
2c b11

2c · · · blm2c

∣∣∣∣∣b10
1s b11

1s · · · blm1s

b10
2s b11

2s · · · blm2s

]
i

(B.97)

blm1c = −mPml sin(mφ) (B.118)

blm1s = mPml cos(mφ) (B.118)

blm2c = 2
Re sin2(θ)(Lmax−Lmin)

Pml(`)cos(mφ) (B.118)

blm2s = 2
Re sin2(θ)(Lmax−Lmin)

Pml(`)sin(mφ) (B.118)

x =

[
xlmc

xlms

]
(B.98)

Expanding each derivative term we have:


δV(r)

δV(θ)

δV(φ)


=


1

Re sin2(θ)
2

Lmax−LminP
m
l(`)Φ

m
l

−2(r+Re)
tan(θ)

δV(r)

1
(r+Re) sin(θ)

Pm
l Φm

l(φ)


(B.120)
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B.4.1 Defining Hr. Expanding δVr using the definition of Φm
l (Eq. B.9) we have:

δV(r) =

(
1

Re sin2(θ)

2

Lmax − Lmin
Pm
l(`)

)(
xlmc cos(mφ) + xlms sin(mφ)

)
(B.121)

We may isolate the coefficients, xlmc and xlms and give a j index for the jth grid point:

δV(r) =

(
cos(mφ)

Re sin2(θ)

2

Lmax − Lmin
Pm
l(`)

)
j︸ ︷︷ ︸

,clmrj

xlmc +

(
sin(mφ)

Re sin2(θ)

2

Lmax − Lmin
Pm
l(`)

)
j︸ ︷︷ ︸

,slmrj

xlms

(B.122)

We may stack this into matrix form:



δV(r)1

δV(r)2

...

δV(r)j


︸ ︷︷ ︸

[j×1]

=



c00
r0 c10

r0 · · · clmr0

c00
r2 c10

r2 · · · clmr2

...
...

. . .
...

c00
rj c10

rj · · · clmrj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s00
r0 s10

r0 · · · slmr0

s00
r2 s10

r2 · · · slmr2

...
...

. . .
...

s00
rj s10

rj · · · slmrj


︸ ︷︷ ︸

[j×k/2]|[j×k/2]



x10
c

x11
c

...

xlmc

x10
s

x11
s

...

xlms


︸ ︷︷ ︸

[k/2× 1]

[k/2× 1]



(B.123)

δV(r)j =

[
Hrc|Hrs

]
jk

x
lm
c

xlms


k

(B.124)
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δ~V(r),j = Hr,jk~xk (B.125)

Where Hr,jk is defined as:

Hr,jk =



c00
r0 c10

r0 · · · clmr0

c00
r2 c10

r2 · · · clmr2

...
...

. . .
...

c00
rj c10

rj · · · clmrj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s00
r0 s10

r0 · · · slmr0

s00
r2 s10

r2 · · · slmr2

...
...

. . .
...

s00
rj s10

rj · · · slmrj


(B.126)

B.4.2 Defining Hθ. δEθ is defined by a term multiplied by the previously defined

δVr (Eq. B.125):

δV(θ) =
−2(r +Re)

tan(θ)︸ ︷︷ ︸
,~cθ,j

δV(r) (B.127)

Plugging in Eq B.125 for δV(r):

δV(θ),j = ~cθ,jHr,jk~xk (B.128)

B.4.3 Defining Hφ. δVφ is defined by the derivative of the harmonic term Φm
l as

shown in Eq. (B.9)

δV(φ) = Pm
l Φm

l(φ) (B.129)

δV(φ) = mPm
l [−xlmc sin(mφ) + xlms cos(mφ)] (B.130)

Isolating the coefficients as done before:

δV(φ) = (−mPm
l sin(mφ))︸ ︷︷ ︸
clmθj

xlmc + (mPm
l cos(mφ))︸ ︷︷ ︸

slmθj

xlms (B.131)
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Stacking this into matrix form:



δV(θ)1

δV(θ)2

...

δV(θ)j


︸ ︷︷ ︸

[j×1]

=



c00
θ0 c10

θ0 · · · clmθ0

c00
θ2 c10

θ2 · · · clmθ2

...
...

. . .
...

c00
θj c10

θj · · · clmθj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s00
θ0 s10

θ0 · · · slmθ0

s00
θ2 s10

θ2 · · · slmθ2

...
...

. . .
...

s00
θj s10

θj · · · slmθj


︸ ︷︷ ︸

[j×k/2]|[j×k/2]



x10
c

x11
c

...

xlmc

x10
s

x11
s

...

xlms


︸ ︷︷ ︸

[k/2× 1]

[k/2× 1]



(B.132)

δV(θ)j =

[
Hθc|Hθs

]
jk

x
lm
c

xlms


k

(B.133)

δ~V(θ),j = Hθ,jk~xk (B.134)
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Where Hθ,jk is defined as:

Hθ,jk =



c00
θ0 c10

θ0 · · · clmθ0

c00
θ2 c10

θ2 · · · clmθ2

...
...

. . .
...

c00
θj c10

θj · · · clmθj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s00
θ0 s10

θ0 · · · slmθ0

s00
θ2 s10

θ2 · · · slmθ2

...
...

. . .
...

s00
θj s10

θj · · · slmθj


(B.135)

B.4.4 Matrix Form of Electric Potential. We can use the definitions of Hr, Hθ

and Hφ (Eqs. (B.126), (B.128) and (B.135) respectively) to define a mapping from

~xk to ~Eij. Where the index i corresponds to the spatial vector dimensions r, θ and

φ. The index j corresponds to the grid point and k is the coefficient number. Now I

define the Electric field in matrix form:
Er

Eθ

Eφ


j

= −


Hr

1
r+Re

Hθ

1
(r+Re)sin(θ)

Hφ


jk

xc
xs


k

(B.136)

or with using full index notation:

Eij = −Hijkxk (B.137)

From here we may use the above expression as the electric field to define the ion drift

at all grid points using equation (B.39).

B.5 Mapping from Coefficients to Ion Drifts

This section provides the derivation for calculations of implementing EMPIRE
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ion drift correction calculations. The goal is to provide an expression for a linear

matrix form that maps coefficients to the field-aligns ion drifts.

Beginning with the expression for ~E × ~B ion drift (Eq. B.39)

δv⊥ =
δ ~E × ~B

B2
(B.138)

Where δ ~E was previously defined as Eq. (B.137). The next step is to perform the

cross product of δ ~E and ~B.

~v⊥ =
1

B2

[
~E × ~B

]
(B.139)

=
1

B2

∣∣∣∣∣∣∣∣∣∣∣∣∣

r̂ θ̂ φ̂

δEr δEθ δEφ

Br Bθ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
(B.140)

~v⊥ =
1

B2


−δEφBθr̂

δEφBrθ̂

(δErBθ − δEθBr) φ̂


(B.141)

Where the matrix form for δ ~E is already defined with mapping matrices Hr, Hθ and

Hφ from sections B.4.1, B.4.2 and B.4.3 respectively. To produce an expression that

maps coefficients to ion drifts, I substitute the expression shown as equation (B.137)

into (B.141).

~v⊥ =
1

B2


−δEφBθr̂

δEφBrθ̂

(δErBθ − δEθBr) φ̂


(B.142)
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
δv⊥,r

δv⊥,θ

δv⊥,φ


=


1

(r+Re)sin(θ)
HφBθr̂

− 1
(r+Re)sin(θ)

HφBrθ̂(
−HrBθ + 1

r+Re
HθBr

)
φ̂



xc
xs

 (B.143)

Where now a new set of mapping matrices can be defined as: Fr, Fθ and Fφ that

map the coefficients x to ion drifts.


δv⊥,r

δv⊥,θ

δv⊥,φ


=


H~vrr̂

H~vθθ̂

H~vφφ̂



xc
xs

 (B.144)
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