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ABSTRACT

In the high-latitude ionosphere dense plasma formations called polar cap patches

are sometimes observed. These patches are often associated with ionospheric scintil-

lation, a rapid fluctuation in the amplitude and phase of a radio signal that degrades

communications and navigation systems. Predicting polar cap patch movement across

the polar cap is an important subject for enabling forecasting of the scintillation.

Lagrangian coherent structures (LCSs) are ridges indicating regions of max-

imum fluid separation in a time-varying flow. In previous studies, the Ionosphere-

Thermosphere Algorithm for Lagrangian Coherent Structures (ITALCS) predicted

the location of LCSs. These LCSs were shown to constrain polar cap patch source

and transport regions for flow assumed to due to ~E× ~B plasma drift. The LCSs were

predicted based on an empirical model of the high-latitude electric field for ~E.

In this thesis, the LCSs are generated using the first principles ionospheric

model SAMI3 (SAMI3 is Another Model of the Ionosphere) as the model for electric

field. The work relies on an understanding of various magnetic coordinate systems in

space science, and includes three different approaches for attempting to generate the

~E × ~B drift as the flow fields that are to input to ITALCS. Finally, a representative

LCS result is obtained with SAMI3 and shown to be at the high latitudes on the

dayside, similar to prior work, but spanning a shorter longitudinal range.

x
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CHAPTER 1

INTRODUCTION

Plasma is a state of matter containing ionized atoms, molecules, and free

electrons. The atmosphere can be classified into several different layers based on

its temperature and ionization characteristics. While the thermosphere is neutral,

ionized particles, electrically charged ions and free electrons, are created within it

from the absorption of extreme ultraviolet and x-rays by neutral atoms and molecules

[1]. Even though it has less than 1% ionization, the presence of plasma is significant

enough to see the movement of charged particles based on electromagnetic forcing,

and is referred to as the ionosphere. The ionosphere ranges in altitude from below 50

km to up to 1000 km and beyond.

Within the ionosphere, the region with the densest plasma is the F2 layer, at an

altitude from about 200 km up, shown in Figure 1.1. The ionosphere has important

effects on radiowave propagation. The index of refraction is proportional to the

plasma density. For higher frequencies, the signal will be trans-ionospheric but will

undergo group delay. Sometimes the F layer has rapid or erratic variation in density

as compared with a typical smoothly varying density [2], and is sometimes referred to

as “sporadic F.” The sporadic ionization is often associated with larger (100s of km)

regions of high plasma density. In the high latitudes, these density enhancements

are referred to as polar cap patches. Polar cap patches are also associated with

rapid fluctuations in the amplitude and phase of trans-ionospheric signals such as

those of Global Navigation Satellite Systems (GNSS). The fluctuations are called

“scintillation” and can degrade position, navigation, and timing service. Knowing

where patches convect using a high-fidelity model of the ionosphere could contribute

to an effective radio signal degradation forecast system.
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Figure 1.1. Atmospheric layers. The plasma ionosphere is embedded in the neutral
thermosphere. The F region is a layer of the ionosphere, and has multiple regions,
or layers. The layers’ altitude ranges vary from day to night and with the level of
activity of the Sun. Credit: Wikimedia commons [3]
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1.1 Prior work

In fluid dynamics, one commonly used reference frame for analysis is the Eu-

lerian frame, in which an observer watches fluid moving past. The Lagrangian frame,

in contrast, is the one that moves with the fluid. While the Eulerian frame is useful

in many contexts, coherent structures identified in the flow as seen in this frame are

observer-dependent [4]. In contrast, structures identified in the Lagrangian frame

are objective, independent of the observer. These Lagrangian coherent structures

(LCSs) are ridges that show maximal separation in a time-evolving flow [5]. Most

commonly, LCSs are found by computing the finite-time Lyapunov exponent (FTLE)

everywhere in the fluid domain and identifying the locus of points with the locally

maximum FTLE as the LCS [6].

To find such structures in the plasma of the ionosphere, past research used the

Ionosphere-Thermosphere Algorithm for Lagrangian Coherent Structures (ITALCS)

[7]. The LCSs were found to be at high latitudes in a horseshoe shape surrounding the

poles with the opening on the night side [8]. The input ~E× ~B drifts in that paper were

calculated from Weimer [9] and International Geomagnetic Reference Field (IGRF-12)

[10]. Weimer is a model that uses twin, empirical representations of the ionospheric

electric and magnetic Euler potentials’ response to the interplanetary magnetic field

(IMF) drivers [9]. A follow-on study of ionospheric LCSs used measurements of high-

latitude drifts from an array of radars and found the LCSs to be shaped more like a

“W” [11].

Empirical models of electric potential such as Weimer [9] do not model the

internal physics, and measurement-based convection can require significant extrapo-

lation to regions beyond the measurements (e.g., spanning the high-latitude Russian

sector). Both may negatively impact accuracy in the shape and location of the La-
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grangian coherent structure.

1.2 Contribution

In this thesis, I use SAMI3 (SAMI3 is Another Model of the Ionosphere), a first

principles ionospheric model, to compute LCS ridges. This is the first time applying

a first-principles ionospheric model to study LCSs. I investigate three methods for

transforming the flow field vectors in order to obtain the LCSs, the third of which is

used for analyzing LCSs as modeled by SAMI3. This research will lead to analysis

and prediction of polar cap patch movement.
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CHAPTER 2

BACKGROUND

2.1 ~E × ~B drift

In this section, I review how single charged particle motion can give rise to

bulk plasma drift in the presence of both electric and magnetic fields. If we consider

the external force on a charge q due to an electrostatic field ~E only:

~F = q ~E (2.1)

the charge will accelerate in the direction of the field. If this is the only force acting

on the charge, the charge q with mass m will accelerate along the direction of the

field:

~a =
q

m
~E (2.2)

A charge moving at velocity ~v in the presence of only a magnetic field ~B is

subject to the force:

~F = q~v × ~B (2.3)

where ~v is the charged particle’s velocity, and ~B is the magnetic field. For a positively

charged particle moving in the x̂ direction with uniform magnetic field directed along

ŷ, a positive charge undergoes a force in the ẑ direction. Since the force is always

perpendicular to the velocity vector, the charge will undergo circular motion in the

plane normal to the field. An electron will circle in the opposite sense from an ion.

This circular motion is called gyration [12]. A particle’s velocity component along the

field line is unchanged by the magnetic field. A particle with nonzero velocity along

the field line will “corkscrew” around it but will remain confined to that field line.
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The radius of gyration rg can be found by equating the ~v × ~B force with the

centripetal force:

mv2
⊥

rg
= |q|v⊥B (2.4)

rg =
mv⊥
|q|B

(2.5)

where the ⊥ symbol indicates the component orthogonal to ~B. Note that as the speed

perpendicular to the magnetic field v⊥ increases, the radius of gyration increases.

When both electric and magnetic fields are present, the sum of Eqs. (2.3) and

(2.1) is the Lorentz force

~F = q( ~E + ~v × ~B) (2.6)

If the electric field has a component orthogonal to the magnetic field, the electric field

causes the charge to change speed v⊥ perpendicular to the magnetic field. Thus, the

radius of gyration changes. The net motion as a result of gyration with a varying

radius is a drift of the the center of the gyration. The drift vector is in a direction

perpendicular to both the electric field and the magnetic field (see Figure 2.1). The

particle will undergo a net drift. This “E cross B” drift is given by:

~vE =
~E × ~B

B2
(2.7)

The ~E × ~B drift is independent of charge. Therefore, electrons and ions drift in the

same direction at the same speed, resulting in no net current [12].

In the ionosphere, plasma is subject to electric fields and the Earth’s geomag-

netic field. In the high-latitude ionosphere ~E × ~B drift is significant. In the F layer

the plasma flow can be assumed to be entirely ~E × ~B. At lower altitudes which have

a higher density of neutral particles, neutral winds and collisional effects also mat-

ter. The typical high latitude ~E × ~B drift pattern consists of two cells of circulation.

Plasma drifts from the noon longitude over the pole to midnight, then some plasma
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Figure 2.1. Particle drifts in crossed ~E and ~B fields. The negatively charged particle
is assumed to have the same velocity as the positively charged one but a smaller
mass and therefore a smaller gyro radius. The ~E × ~B drift speed ~vE for both
particles is the same. Credit: Bittencourt [13]

circulates around to the dawn longitude back to noon, and other plasma flows around

to the dusk longitude back to noon, at high magnetic latitudes.

To obtain ~E× ~B drift we need to know the external electric field and magnetic

field. Electric field ~E can be found as the negative gradient of a scalar electric

potential function VE, with units of Volts:

~E = −~∇VE (2.8)

2.2 Magnetic field

Several model representations of Earth’s internally generated magnetic field

are common. The simplest is the centered dipole model, in which the magnetic field is

represented as that of a magnetic dipole (e.g., a bar magnet), as illustrated in Figure

2.2. Magnetic field lines point toward the Arctic, which means that what we call the

magnetic north pole is actually the south end of the “bar magnet” of Earth.

Every magnetic field line has a maximum radius from the center of Earth Req
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Figure 2.2. Illustration of magnetic field lines. Magnetic field around the earth when
we consider the earth as a simple dipole magnet drawn in its center.

at the magnetic equator.

r = Req cos2 λm (2.9)

where λm is the magnetic latitude measured from the equatorial plane of the magnetic

dipole axis. The radius Req can be used to refer to the set of field lines or “shell” all

having that same equatorial radius. This is known as the “L-shell.” The equation for

the L-shell is:

r = L cos2 λm (2.10)

where r is the radial distance in units of Earth radii RE to a point on the line, and

L is the L-shell in units of Earth radii.

An even more accurate model of the Earth’s internal magnetic field, called the

“eccentric dipole,” is one for which the dipole axis does not pass through the center of

Earth. Instead the dipole center is offset from the center of Earth in the direction of

east Asia. The primary effect of the eccentric dipole is that a given L-shell is at lower
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altitudes of the atmosphere in the American sector. At ionospheric heights, Earth’s

field deviates significantly from the centered dipole, compared to eccentric dipole [14].

Therefore, eccentric dipole coordinate systems are mainly used in ionospheric study

for accuracy.

The International Geomagnetic Reference Field (IGRF) is one of the most

accurate global models of the Earth’s internally generated magnetic field [10]. IGRF

is the negative gradient of a magnetic scalar potential VB:

~B(r, θ, φ, t) = −~∇VB(r, θ, φ, t) (2.11)

VB(r, θ, φ, t) = a

N∑
`=1

∑̀
m=0

(a
r

)`+1

(gm` (t) cosmφ+ hm` (t) sinmφ)Pm
` (cos θ)(2.12)

where r represents radial distance from the center of the Earth, a = 6371.2 km be-

ing the geomagnetic conventional Earth’s mean reference spherical radius, θ denoting

geocentric co-latitude. VB is represented with a spherical harmonics basis includ-

ing harmonic terms in geocentric longitude φ and Legendre polynomial Pm
` . Three

output components of Earth’s magnetic field are provided in a geographic spherical co-

ordinate system, Br, Bθ, Bφ (geographic radial, colatitude, and longitude directions),

given an input geographic latitude, longitude, altitude, and time.

IGRF is a multipole expansion of the potential, the largest term of which is

the dipole [10]. The terms with l = 1 produce a centered dipole model. Coefficients

gm` , h
m
` are updated and published approximately every five years due to the time

variation of Earth’s magnetic field, notably in the drift of the poles. The version of

the IGRF model and coefficients used in this work are those of the 12th generation

(IGRF-12) [10].

2.3 SAMI3

SAMI3 (Sami3 is Also a Model of the Ionosphere) [15] is a three-dimensional

global model based on two dimensional model SAMI2 [16]. This model treats the
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plasma dynamics and chemical evolution of 7 ion speciesH+, He+, N+, N2
+, NO+, O2

+,

and O+. SAMI3 models the plasma along a magnetic flux tube from hemisphere to

hemisphere. SAMI3 produces electric potential as output as well as ~E × ~B drifts.

The model solves the dynamics of the ionosphere on an eccentric dipole system

known as the Apex coordinate system, to achieve better accuracy with respect to the

magnetic field than the centered dipole coordinate. The native SAMI3 output will

be on an Apex coordinate system. This coordinate system will be discussed in more

detail in Chapter 4.

2.4 Lagrangian coherent structures

Coherent structures in a fluid are features that persist over some period of

space and time that are not part of the mean flow [17]. An example is shown in

Figure 2.3, with the Great Red Spot of Jupiter, which is an anti-cyclonic storm larger

than Earth that has lasted for over a hundred years.

Defining coherent structures such as a vortex in an Eulerian frame is observer-

dependent. If the observer is also rotating, a vortex apparent in one frame might not

seem to exist in another Eulerian frame. The Lagrangian reference frame moves with

the fluid element. Identifying coherent structures in a Lagrangian frame has been

found to be observer-independent, or objective [5].

As an example, consider a flow of two counter-rotating vortices that alternately

expand and contract. At any instant t0, there is an invisible dividing line between

the vortices. Fluid elements starting on one side of the dividing line will flow in

one vortex, and fluid elements on the other side of the dividing line will circulate

to the other vortex. All observers will see the same behavior of the fluid elements.

The Lagrangian coherent structure (LCS) is the dividing line (or surface in 3D) that

separates the two regions exhibiting different fluid behavior. For the time-varying
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Figure 2.3. Example of coherent structures in the atmosphere of Jupiter. This full-
disc image of Jupiter was taken on 21 April 2014 with Hubble’s Wide Field Camera
3 (WFC3). Image credit: Wikimedia [18]

double-gyre, the yellow ridge shown in Figure 2.4 illustrates the LCS.

As time passes, points A,B,C which are originally equally spaced from each

other at A0, B0, C0 travel from the top to the bottom of the plot, ending at Af , Bf , Cf .

In Figure 2.4a, Af , Bf end at the lower right but Cf ends at the lower left. The yellow

LCS ridge separates the points in the initial flow that will have significantly different

tracer trajectories. The fact that B0, C0 end up at opposite regions of the domain

is indicated by the fact that the LCS ridge separates B0, C0 at time t0. The LCS

describes points at time t0 that will separate apart; no particles will mix across the

yellow coherent structure. The LCS itself moves with the flow over time as well; this

is why the LCS at t0 appears to be crossed by the particles at various times t > t0 as

they start from A0, B0, C0 traveling to Af , Bf , Cf .
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The initial time t0 considered in a time-varying flow will affect the LCS po-

sition. In Figure 2.4b, although particles A,B,C have same initial positions as in

Figure 2.4a, for t0 = 0.96 s only particle A will arrive in the lower right of the do-

main, as the coherent structure was positioned between A0, B0 at the beginning. In

other words, the LCS ridge can be used to predict or constrain the behavior of initial

particles over time.

Figure 2.4. Double-gyre LCSs (yellow) for two different initial times. Reprinted from
[8].
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The most commonly used method for finding LCSs is to compute the finite-

time Lyapunov exponent (FTLE) [4]. A flow map ~F is a mapping of fluid elements

starting at position ~x0 at time t0 in a domain to a position at time tf after flowing in

velocity field ~̇x which may be time-varying.

~̇x = ~v(~x, t) (2.13)

~F
tf
t0 (~x0) = ~x(tf ; ~x0, t0) (2.14)

= ~x0 +

∫ tf

t0

~v(~x, t)dt (2.15)

The flow map can be computed by integrating each particle according to the velocity

along its trajectory. The linearization of the flow map describes how perturbations in

initial position affect the final position. The linearization is a matrix of first derivatives

of components of ~F with respect to each coordinate component xi:

J =

∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2

 (2.16)

The finite-time Lyapunov exponent σ is the normalized largest eigenvalue, λmax, of

JTJ:

σ(J) =
1

|τ |
log (

√
λmax(JTJ)) (2.17)

where τ is duration tf − t0. This largest eigenvalue describes the maximum amount

of stretching at a given initial point. The Jacobian can be computed for each initial

point in the domain. The locus of points with the maximum FTLE over the domain

defines regions of the initial domain that will undergo the most stretching. The set of

points with locally maximum FTLE is defined as the Lagrangian coherent structure.

Returning to Figure 2.4, the color of each pixel in the field indicates the FTLE

value at that initial point. The LCS is the set of points indicated by the yellow ridge,
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whose FTLE value is locally maximum at about a value of 5 s−1. The set of points

comprising the the LCS in Figure 2.4a differs from the set of points of the LCS in

Figure 2.4b. This means that the LCS depends on the initial time t0 because the

flow mapping ~F differs with initial time in a time-varying flow. It also differs with

integration time τ (not shown).

2.5 ITALCS

Over the past several years, the ionosphere-thermosphere algorithm for LCSs

(ITALCS) has been developed to compute the FTLE map for determining LCSs on

a spherical surface. It uses generalized coordinates of latitude λ and longitude φ

for coordinates x1, x2 on a regularly spaced grid. ITALCS implements the flow map

by integration according to Eq. (2.15) ITALCS additionally wraps particles on a

latitude-longitude grid around the globe and over the poles such that the domain

remains closed. The equations describing this wrapping of coordinates are in [8].

Then the FTLE is computed as the normalized maximum singular value of J in Eq.

(2.16) at each point, and can be plotted on a map of the globe.

If velocity fields are provided as linear ground speeds east ve and north vn,

they must be converted to angular rates λ̇, φ̇ to correspond to the λ, φ coordinates

for integration as:

φ̇ =
ve

r cosλ
(2.18)

λ̇ =
vn
r

(2.19)

In this work r = RE + h where the mean radius of Earth is RE = 6371.2 km and h is

the altitude above the surface of Earth. Note that φ̇ becomes undefined at the poles.

Previous researchers have used ITALCS with geographic latitude and longitude

to show that ionospheric LCSs are located at high latitudes and, according to an

empirical model, are horseshoe-shaped [8]. Using data-derived electric potential on a
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geomagnetic latitude and longitude grid, the shape was found to be more structured

possibly as a “W” around the pole [11]. The closed side was oriented toward the local

daytime longitude and the opening on the nightside. In both cases, polar cap patches

were confined and separated in their movement from other regions of high plasma

density.
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CHAPTER 3

VECTOR ROTATION FROM LOCAL MAGNETIC COORDINATES TO
GEOGRAPHIC COORDINATES

When using ITALCS, the velocity field ~v must be specified in the same coor-

dinate components as the spatial gridpoints, in order to complete the integration of

the particle velocity over its trajectory according to Eq. (2.15).

For this study, collaborators provided ~E × ~B drifts output from SAMI3 on

a regular geographic grid of longitude φ and latitude λ. The velocity components

provided are “ur component of ExB drift velocity (radial)”; and “uz component of

ExB drift velocity (magnetic zonal),” each in units of cm/s.

Given the descriptions, I considered the component directions as a curvilin-

ear coordinate system with one unit vector oriented along the local magnetic field

line. These “local magnetic coordinates” (Section 3.2 of [14]) are commonly used in

ionospheric dynamics. In this magnetic field coordinate system, seen in Figure 3.1,

ûh is a unit vector that points along the field line, ûz perpendicular to the field line

eastward (magnetic zonal), and ûr perpendicular to the ~B field, in the magnetic-

meridional plane. Since the vector elements are ion drift velocities, from the ~E × ~B

cross product, the uh vector component of the drift, which is along the B field, is

zero.

3.1 Vector rotations

For the goal of obtaining LCSs by inputting SAMI3 drifts to ITALCS, conver-

sion to geographic coordinates is necessary. The first method used for transforming

from local magnetic field coordinates to geographic coordinates is shown in Figure

3.2.
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Figure 3.1. Local magnetic field coordinates. Unit vector ûh points along the field
line, ûz is perpendicular to the field line eastward (magnetic zonal), and ur is

perpendicular to the ~B field, in the magnetic meridional plane. At the magnetic
equator ûr points radially outward and ûh is horizontal. Since the vector elements
are ion drift velocities, from the ~E × ~B cross product, the ûh vector component of
the drift, which is along the B field, is zero.

The first step is to rotate the velocity vector from local magnetic coordinates

to a magnetic East-North-Up (ENU) system. This rotation can be done using the

inclination angle I. The inclination angle is the angle between the magnetic field line

and the local horizontal vector in the plane containing the magnetic field line as shown

in Figure 3.3. We also call this angle the dip angle because the magnetic field dips

down when it gets closer to the north pole. The inclination angle is defined positive

downward, so is positive in the northern hemisphere and negative in the southern

hemisphere.

When we consider converting local magnetic coordinates to magnetic ENU (see

Figure 3.3), at the magnetic equator, the magnetic northward unit vector is horizontal
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and magnetic ENU upward unit vector points radially away from the center of Earth.

Based on this relation, inclination allows for a vector rotation between magnetic field

and magnetic ENU coordinates as:
mE

mN

mU


=


1 0 0

0 sin I − cos I

0 cos I sin I




uz

ur

uh


(3.1)

After the first rotation, an additional rotation is required to transform to

geographic vectors. To convert magnetic ENU to geographic ENU vector elements,

declination is used. Declination angle is the angle between the horizontal component

of the magnetic field and the local geographic north direction. Declination is positive

when magnetic north points eastward of geographic north as shown in Figure 3.4. The

rotation axis will be the upward unit vector M̂u = Ĝu shown in Figure 3.5. Given

the declination angle D, geographic ENU components are found from the following

matrix equation: 
gE

gN

gU


=


cosD sinD 0

− sinD cosD 0

0 0 1




mE

mN

mU


(3.2)

The inclination and declination angle can be determined from the International

Geomagnetic Reference Field (IGRF). For a given location, IGRF produces the three

components of the magnetic field in geographic spherical coordinates as:

~B = BφĜE −BθĜN +BrĜU (3.3)

with Br the vertical component, Bθ the geographic southward component, and Bφ

the geographic eastward component. Based on the magnetic field vector direction as
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shown in Figure 3.3 and Figure 3.7, declination D and inclination I can be found as:

D = tan−1

(
Bφ

−Bθ

)
(3.4)

I = tan−1

 Br√
B2
θ +B2

φ

 (3.5)

After the coordinate rotation, the SAMI3 ion velocity data are converted to

angular rates according to Eqs. (2.18)-(2.19) and then are ready to be input to

ITALCS.

3.2 Result

The FTLE map over the north pole for t0 = 1 January 2014 00:00 UT and an

integration time of τ = 3 hours is shown in Figure 3.8. The FTLE values converge

to the pole, which looks very different from the horseshoe shape we expect to see

based on the literature. While some of the inaccuracy may be due to the singularity

of angular speed at the pole, in the end I determined that the coordinate system

in which SAMI3 drifts were provided was not in fact the local magnetic coordinate

system. The true SAMI3 coordinate system will be discussed in the next chapter.
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Figure 3.2. Overview of method 1 processing. When ion velocity is given in magnetic
field coordinates, two vector rotations and speed conversion will be required before
input to ITALCS.
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Figure 3.3. Magnetic ENU. Magnetic eastward unit vector, M̂E, is perpendicular to
the field line eastward. Magnetic northward unit vector, M̂N , is horizontal and a
vector in the plane of the field line. Magnetic ENU upward unit vector, M̂U , points
radially away from the center of Earth.

Figure 3.4. Definition of declination. Declination is positive when magnetic north
points eastward of geographic north.
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Figure 3.5. Declination angle and coordinate rotation from magnetic ENU to geo-
graphic ENU. Upward unit vectors M̂U and ĜU point in the same direction. Mag-
netic north unit vector M̂N is aligned with the line from the point toward the North
Magnetic Pole. Similarly, ĜN is points toward the North Geographic Pole. M̂E is
perpendicular to the field line eastward. ĜE is perpendicular to the vectors, ĜU

and ĜN , eastward.

Figure 3.6. Obtaining inclination angle from IGRF. r̂, φ̂, and θ̂ are positive unit axes
in IGRF. ~Br , ~Bθ, and ~Bφ are decomposed elements of magnetic field, ~B.
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Figure 3.7. Obtaining declination angle from IGRF. r̂, φ̂, and θ̂ are positive unit axes
in IGRF. ~Br , ~Bθ, and ~Bφ are the decomposed horizontal elements of magnetic

field, ~B.
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Figure 3.8. Finite-time Lyapunov exponent map of SAMI3 plasma drifts at 300
km over the northern hemisphere for initial time t0 =1 January 2014 00:00 UT,
integration time τ = 3 hours. The color scale represents the FTLE values ranging
from 0 to 3.5× 10−4 s−1.
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CHAPTER 4

TRANSFORMATION OF NON-ORTHOGONAL VECTORS

After clarifying with the model output providers that the coordinate system

of the SAMI3 outputs is not the local magnetic field system, a new method for trans-

formation was required. SAMI3 runs on the Apex coordinate grid. Apex coordinates

are a curvilinear system that is non-orthogonal [14].

Orthogonal coordinate systems, such as the geographical coordinate system

ĜE, ĜN , ĜU introduced in the previous chapter, are commonly used in mechanics.

They are convenient because matrix rotations allow us to convert from one orthogonal

system to another. However, non-orthogonal vectors require different steps for a

coordinate transformation. In this chapter, I review the Apex coordinate system and

provide a method of converting Apex coordinate vector components into geographic

vector components.

4.1 Apex coordinates

While dipole coordinates or spherical coordinates are simpler to use for iono-

spheric studies, coordinates with non-dipolar components are considered more ac-

curate because they account for multi-pole magnetic field components and Earth

oblateness [19]. Apex latitude and longitude coordinates are often used in ionospheric

electrodynamic calculations. This is because the strong influence of the geomagnetic

field on charged-particle motion in the ionosphere prevents the charged particles from

crossing the field lines. Therefore, modeling ionospheric behavior based on magnetic

field is more sensible [14].

The Apex coordinate system is based on the concept of a magnetic shell,
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analogous to the L-shell. For an oblate Earth the apex of the field line is defined to

be the point on the magnetic line (obtained using IGRF) that is a maximum height

above the ellipsoid [20]. The apex shell consists of all the magnetic field lines whose

apexes are at a given height hA above the surface of the Earth. Apex latitude specifies

a particular apex shell. Apex longitude specifies a particular field line in the shell,

and its height above the Earth, which specifies two points on the magnetic field line

in the northern and southern hemispheres.

Apex latitude λA is:

λA = ± cos−1

√
RE

RE + hA
(4.1)

where RE is the equatorial radius of the ellipsoid of Earth, and hA is apex height, the

height of the apex of the field line above the geoid. Any point along a single field line

will have the same λA. In this way the latitude coordinate can be used analogously

to the “L” parameter to refer to a quantity that is constant for a given field line.

Apex longitude φA is:

φA = sin−1

(
cosλ sin(φ− φ0)

cosλD

)
(4.2)

where λD, the dipole latitude, is given by

λD = sin−1 (sinλ sinλ0 + cosλ cosλ0 cos(φ− φ0)) (4.3)

Here λ and φ are the geographic latitude and longitude, respectively. The geographic

latitude and longitude of the north pole of the earth-centered dipole are λ0 and φ0,

respectively [20].

Apex coordinates have the same form as general curvilinear coordinates, as

illustrated in Figure 4.1. Given that the velocity components mentioned at the be-

ginning of Chapter 3 provided by SAMI3 are “ur component of ExB drift velocity
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Figure 4.1. Illustration of general curvilinear coordinates as Apex coordinate compo-
nents. Constant contour λA, φA are on a surface of constant magnetic potential V .
At point p the ê1 vector is tangent to coordinate contour λA, ê2 vector is tangent
to coordinate contour φA. Ion velocity components uz and ur align with ê1 and ê2,
respectively.

(radial)”; and “uz component of ExB drift velocity (magnetic zonal),” each in units

of cm/s.

Redefining the velocity components in terms of the Apex coordinate system,

the unit vector ê1 is tangent to coordinate contour λA, and points eastward tangent to

the Apex latitude line. The ion velocity component aligned this vector is uz. The ê2

vector is tangent to coordinate contour φA and points equatorward. The ion velocity

component aligned with this vector is ur, positive in −ê2 direction. In other words,

SAMI3 drifts are expressed as

~vExB = uz ê1 − urê2 (4.4)

Finally, ê3 is aligned with the IGRF magnetic field, meaning ê3 = −ûh, with ûh as

defined in the previous chapter in Figure 3.1.

4.2 Concept for transforming velocity from Apex coordinate directions

Equations 4.1 and 4.2 provide scalar coordinate conversions for latitude and



28

(a) Apex latitude tangent vectors. The blue lines are constant Apex latitude

contours. Green arrows pointing eastward show tangent vectors at specific grid

points, corresponding to ê1 mentioned in Figure 4.1.

(b) Apex longitude tangent vectors. The blue lines are constant Apex longitude

contours. Magenta arrows pointing equatorward show tangent vectors at specific

grid points corresponding to ê2 mentioned in Figure 4.1.

Figure 4.2. Illustration of Apex latitude and longitude tangent vectors. The gray
grid represents geographic coordinates.
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longitude, but do not specify a vector transformation. Therefore, I present a way

to derive the apex coordinate unit vector directions. The concept is illustrated here,

with numerical steps given in Section 4.3.

Figure 4.2(a) illustrates individual lines of Apex latitude on a geographical

latitude/longitude map. Each curve represents one specific Apex latitude value. As

mentioned in the discussion of Figure 4.1, tangent vectors on each line represent the

unit axis at a given point. Therefore, a green tangent vector is the direction of one

of the Apex unit vector directions, i.e., the zonal direction. Figure 4.2(b) shows

curves of constant Apex longitude in blue. The magenta arrow is a tangent vector

at each specific point. This tangent vector is also one unit vector in Apex magnetic

coordinates at a given point. As we are considering ~E × ~B drift, each velocity will

have components in the eastward and equatorward directions. The third direction is

parallel to ~B locally, and ~E × ~B will be orthogonal to it.

At a given gridpoint P , as shown in Figure 4.3(a), the tangent unit vectors

can be found. The length of each arrow will be scaled by the plasma drift component

given in the data along each direction (green and magenta arrows). Then at point P ,

as shown in Figure 4.3(b), each component will be decomposed into geographic zonal

and meridional components (e.g., for uz, the decomposition is drawn as a1ĜE− b1ĜN

in the Figure). The sum of the zonal ĜE components will give the geographic zonal

vector component speed (vx on the Figure), and the sum of the meridional components

will give the speed in the ĜN direction. This yields the vector transformation of

the velocity vector from Apex coordinate directions to geographic east and north

directions.

4.3 Method for computing Apex coordinate tangent unit vector directions

In order to transform the velocity vector as described in the previous section,
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(a) At point P , tangent vectors on each Apex latitude and longitude will be green and

magenta arrows. The length of each arrow will be given by the size of the plasma velocity

component,ur, uz, provided along each axis.

(b) At a specific point P , each Apex longitude and latitude vector can be decomposed into ge-

ographic zonal (east-west) and meridional (north-south) directions. After each decomposition,

the vector elements on the same axis can be combined.

Figure 4.3. Vector decomposition of velocity components from ê1, ê2 non-orthogonal
directions to ĜE, ĜN directions.

I first find the tangent vectors ê1, ê2. The concept for the approach is shown in Figure

4.4. At a given point P whose geographic (λ, φ, h) are known, I compute its Apex

coordinates λA. I then follow along the same λA holding it constant, to a neighborhing

point P ′ a small longitudinal distance away. In the limit as the longitudinal separation

approaches 0, the position vector of P ′ relative to P ~rP
′ − ~rP becomes the tangent

vector ê1. Similarly, following from point P along the same Apex longitude φA line

by holding it constant, I find a point P ′′ some small distance away. In the limit as
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Figure 4.4. Grid point P and neighboring point P ′ have the same Apex value, Apex
longitude, φA, or Apex latitude, λA. The coordinates φ, λ are the known geographic
longitude and latitude, respectively, of P . For a given geographic longitude φ′ =
φ+ ∆φ, and known apex value, φA or λA, the unknown λ′ is found. Finding point
P ′ enables calculation of the tangent vector at P for a small ∆φ.

P ′′ approaches P , the position vector difference ~rP
′′ − ~rP approaches ê2.

The first step at a point P with geographic latitude λ, longitude φ and height

h is to compute its Apex latitude and longitude. The Apex latitude requires an

estimate of Apex height hA. In this work I approximate hA in Equation 4.1 using the
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L-shell:

hA = RE(L− 1) =

(
RE + h

cos2 λm
−RE

)
(4.5)

This equation is based on a dipole magnetic field, which is simpler than the true

Apex coordinate system height found by tracing the IGRF multipole field lines. The

L-shell Equation 2.10 is a function of geomagnetic latitude λm. Therefore, IGRF is

used to get geomagnetic latitude λm from the geographic longitude φ, latitude λ, and

height h of point P . After finding hA from the L-shell equation, Equation 4.1 gives

the apex latitude of point P . The choice to use L-shell is for simplicity, letting us

take the gridpoint’s geographic λ, φ, h and plug them directly into Eqs. (4.1)-(4.2).

In Eq. (4.3) the values for the north pole of the Earth-centered dipole are

assumed to be λ0 = 79°, φ0 = −69°, respectively, found from [20]. Note that the

location of the magnetic pole changes over time, so this also may introduce some

inaccuracy.

The full process beginning with ~vExB specified as in Equation (4.4) and re-

sulting in ~vExB = vxĜE + vyĜN is detailed in the flowchart in Figure 4.5. At a point

P having geographic latitude, longitude, height, and time (λ, φ, h, t) the plasma drift

velocity is given in Apex coordinate directions ê1,−ê2. Inputting the latitude, lon-

gitude, and height into IGRF subroutine geodip, the magnetic latitude λm is found

for point P . This is used to calculate the L-shell according to Eq. (2.10) and then

the apex height in Eq. (4.5). Thus the Apex longitude and latitude φA, λA for point

P can be mapped independently from its geographic coordinates φ, λ, h using Eqs.

(4.1)-(4.2).

To find the geographic latitude λ′ at a nearby point P ′ along the same apex

latitude line, I use known geographic longitude φ′ = φ + ∆φ because same λA has

constant hA in Eq. (4.1) and constant magnetic latitude λm in Eq. (4.5).
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Figure 4.5. Overall process of Apex coordinate vectors projection. To obtain tangent
vectors aligned with each Apex latitude and longitude, first, we have to find Apex
latitude and Apex longitude at each geographic point. After that each tangent
vectors are projected to geographic longitude and latitude. The two geographic
vectors from each Apex latitude and Apex longitude are combined at the end.
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When λ′ is found, in the limit as ∆φ is chosen small enough, the spherical

surface on which P and P ′ lie is well-approximated as Euclidean plane on which the

relative position vector of P ′ relative to P lies. The line between P and P ′ approaches

the tangent to the Apex latitude line at point P :

~e1 = lim
∆φ→0

~rP
′ − ~rP ≈ RE(λ′ − λ)ĜN +RE(φ′ − φ)ĜE (4.6)

The tangent vector to Apex latitude at each grid point is chosen to point positive

eastward to match the description of the sign convention of the velocity data provided

(Figure 4.2(a)).

Finding the tangent vector to the Apex longitude line has a similar process.

From Figure 4.4, for a point P whose geographic longitude φ and latitude λ are

known, Eqs. (4.2)-(4.3) give the Apex longitude, φA. I find the unknown geographic

latitude λ′′ from known φ′′ = φ + ∆φ and φA by applying these two known values

in Eqs. (4.2)-(4.3) and solving for λ′′. As ∆φ becomes infinitesimally small, the line

between P and P ′′ can be considered close enough to tangent to the apex longitude

line at point P .

~e2 = lim
∆φ→0

~rP
′′ − ~rP ≈ RE(λ′′ − λ)ĜN +RE(φ′′ − φ)ĜE (4.7)

Tangent vectors to Apex longitude lines are defined to be positive equatorward

(Figure 4.2(b)) [14]. Note that SAMI3 data is positive in the poleward direction.

From the velocity data given, the magnitude of drift velocity components

aligned with each ~ei is known. Therefore, zonal direction ion velocity uz will decom-
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posed into geographical coordinate components, a1 and b1, as:

l1 =

√
(λ′ − λ)2 + ∆φ2 (4.8)

ê1 =
1

REl1
~e1 (4.9)

a1 = (~vExB · ê1)ê1 · ĜE = uz
∆φ

l1
(4.10)

b1 = (~vExB · ê1)ê1 · ĜN = uz
λ′ − λ
l1

(4.11)

where l1 is the norm of the relative position vector ~e1 normalized by RE.

Also, ion velocity can be decomposed into geographical coordinate components

from the given velocity ur in −ê2 direction:

l2 =

√
(λ′′ − λ)2 + ∆φ2 (4.12)

ê2 =
1

REl2
~e2 (4.13)

a2 = (~vExB · ê2)ê2 · ĜE = ur
∆φ

l
(4.14)

b2 = (~vExB · ê2)ê2 · ĜN = ur
λ′′ − λ
l

(4.15)

Each vector component sum

vx = (a1 + a2)ĜE (4.16)

vy = (b1 + b2)ĜN (4.17)

become the ion velocity components in the geographic east and north directions,

respectively (Fig. 4.3(b)). vx
vy

 =

a1 a2

b1 b2


 uz

−ur

 (4.18)

4.4 Result

Fig. 4.6 is a map of the tangent unit vectors of Apex latitude on Cartesian

coordinate on 1 January 2014, 00:15 UT at h = 292.6 km altitude. This height is the
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nearest altitude to the desired 300 km in the data set. Contour lines are Apex latitudes

drawn every 10°. The plot is drawn with unit vectors in grid every 10°for visibility.

Figure 4.7 is a map of polar plot of the North Hemisphere. In both Figures 4.6-4.7 the

color contours show the apex latitude ranging from 0°to 90°on a geographical grid.

Blue arrows are unit tangent vectors ê1 every 10 degrees in geographic coordinates.

The arrows are all pointing eastward relative to the magnetic pole, which is easier

to see in the polar plot of Figure 4.7. Note that at gridpoints at which an arrow is

collocated with an apex latitude line, e.g., at (λ, φ) = (75°N, 130°W) in Figure 4.6,

the arrow is tangent to the Apex latitude contour. In Figure 4.7, an example point

showing that the vector found is tangent to the apex latitude line is at (λ, φ) = (60°N,

160°W).

Figure 4.6. Tangent unit vectors of Apex latitude on Cartesian coordinate on 1 Jan-
uary 2014, 00:15 UT at h =292.6 km altitude. Contour line is Apex latitude drawn
every 10°The plot is drawn with unit vectors in grid with every 10°for visibility.

Figures 4.8-4.9 are maps of the vectors tangent to Apex longitude as computed

with the method described in Section 4.3. The Apex longitude lines have color ranging

from -90°to 90°. Note that, since Eq. (4.2) defines φA from the arcsine, there is an

ambiguity in the quadrant in which the angle lies. For this reason, on the left upper
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Figure 4.7. Maps of Apex latitude contours and tangent vectors at 292.6 km altitude
on January 1st 2014 00:15UT on north polar plot. Apex latitude is shown as
contour colors ranging from 0 to 90°, drawn every 10°for visibility. Blue arrows are
unit vectors for each grid point, drawn every 10°.

part of the plot the lines range from 0°to -90°Apex longitude in color whereas the true

Apex longitude range is -180°to -90°. A similar effect is also visible in the upper right

part of the plot, in which the 90°to 0°color range corresponds to 90°to 180°in real Apex

longitude range. However, since the purpose of plotting the apex longitude contour

lines is to show that the tangent vectors are indeed tangent, the angle ambiguity does

not need to be resolved.

Figure 4.10 is a plot of drift velocity components on a map of geographic

longitude and latitude on 1 January 2014 00:15 UT at h =292.6 km altitude. Figure
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4.11 is the same data on a polar plot of the northern hemisphere. The vectors are

drift velocities transformed to the geographic coordinate directions. The typical high

latitude ~E × ~B drift pattern is two cells of circulation, with flow from the noon

longitude over the pole to midnight, then circulation around to the dawn longitude

back to noon, and another around to the dusk longitude back to noon.

Since the time of this data set begins at t0 =00:15 UT, local noon is at about

180°longitude. I expect the flow to point from 180°to 0°over the pole and divide into

two cells of circulation around the dawn and dusk sides, converging at 180°longitude

again. A simple cartoon of plasma drift streamlines with black arrows in Figure

4.11 shows a dusk circulation cell on the left half of the plot, as might be expected.

However, streamlines on the right side of the North pole plot do not show uniform

counter-clockwise circulation from midnight to dawn (90°longitude) to noon. Addi-

tional research correcting some of the simplifications is required for greater under-

standing.
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Figure 4.8. Tangent unit vectors of Apex longitude on 1 January 2014 00:15 UT at
h =292.6 km altitude. Color contours are Apex longitude values with range -90°to
90°, drawn every 10°for visibility. The range of -180°to °-90 and 90°to °180 is not
modified as we don’t need the absolute apex value for finding tangent vector. Blue
arrows are tangent vectors at 10 °geographic intervals, pointing equatorward.
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Figure 4.9. North pole plot of Apex longitude contours and the tangent vectors to
Apex longitude. The plot is drawn with unit vectors pointing equatorward.
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Figure 4.10. Vector sum of geographic drift velocity components on Cartesian coor-
dinate on 1 January 2014 00:15 UT at h =292.6 km altitude. Color lines are Apex
longitudes and latitudes in degrees. Blue arrows are drift velocity vectors at every
10°geographic grid.
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Figure 4.11. Same plot as Figure 4.10 seen from above the north pole. Black arrow
lines are a simple cartoon of plasma velocity directions.
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CHAPTER 5

USING POTENTIAL VALUE

To reduce runtime and possible errors in transformation, another method is

investigated. Since the coordinate transformation in ion velocity includes the possible

loss of accuracy in the vector transformation process due to simplifying assumptions

made, rather than converting the coordinate components of vector velocities to ge-

ographic coordinates, here instead I calculate the ~E × ~B drifts directly from the

SAMI3 electric potential values. This process is very similar to prior work, in which

the electric potential value output by the Weimer model [9] was used to find LCSs

[8].

The overall process can be seen in Figure 5.1. To obtain ~E × ~B drift, the

external electric field and magnetic field must be modeled. The electric field can be

found from the electric potential scalar field output from SAMI3. Writing the electric

potential, VE, again from Equation 2.8:

~E = −~∇VE

The scalar potential value, VE, is known. As the potential is scalar, its usage in ~E× ~B

drift calculation is independent of unit vector coordinates chosen. The gradient can

be computed in a user’s desired vector coordinate system. The magnetic field ~B is

given from the IGRF model mentioned in Section 2.2. Crossing the electric field

and magnetic field vectors and dividing by the squared magnitude of the magnetic

field, B2, according to Equation 2.7 gives ion velocity vectors. These are converted

to angular rates using Equations (2.18)-(2.19) before input to ITALCS for the FTLE

calculation.
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Figure 5.1. Overview of process for obtaining ionospheric LCSs using electric poten-
tial. Potential data given are on an irregular grid. To obtain a regular grid of
velocities as required by ITALCS, interpolate the potential data to a regular grid.
The ~E × ~B calculation takes the negative gradient of the potential, and crosses
it with the IGRF magnetic field. After getting plasma velocity on a regular grid,
expressed in geographic coordinates directions ĜE, ĜN , ĜU , the drift field can be
input to ITALCS.
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5.1 Interpolation and plotting

As mentioned in Section 2.5, the current version of ITALCS only accepts a reg-

ularly spaced grid of generalized coordinates (which may be latitude and longitude).

However, the potential value from SAMI3 is provided on an irregular geographic grid.

Therefore, before the ~E× ~B drift calculation, the electrical potential data of SAMI3 is

interpolated onto a regular grid so that drift velocities can later be input to ITALCS

on this grid.

The electric potential data is provided at 25 geographic latitudes between

40°to 90°, and at 51 geographic longitudes between -180°to 180°. The grid sparsity

will impact the calculation of the gradient for electric field, and the propagation of

particles for finding LCSs when used in ITALCS. So the data are spatially upsampled.

The MATLAB “cubic” interpolation method onto a 1°mesh grid is shown in

Figure 5.2. The circles are the original potential values, and the mesh is the result

based on 1 °grid interpolation. The map color range is potential and the vertical axis

is kV. The horizontal axes are latitudes in the northern hemisphere and all longitudes.

The electric potential data sparsity in longitude appears to result in inter-

polation errors most visible as “valleys” in the high latitude high electric potentials

(yellow). For example, the interpolation error “valley” is clearly shown in the area

around (φ, λ) =(150°, 80°). We expect the highest potentials to smoothly vary with

longitude at a single latitude.

The interpolation error leads to two problems with the output FTLE values

from ITALCS. First, the production of “valleys” in the electric potential causes a

zigzag pattern in a polar plot of the FTLE values output by ITALCS in Figure 5.3.

Secondly, the interpolation does not span all the way to the 90°latitude or smoothly

across the ±180°longitude boundary. As a result, electric potential data missing near
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Figure 5.2. Electric potential (color and vertical axis) over latitude and longitude,
interpolated from data provided at circles to a regular mesh. Result of 1°grid
interpolation. The interpolation includes error in the form of valleys between the
data points of highest potential.

the pole and 180°longitude leads to 0 FTLE values, spanning a wider spatial area as

the integration time becomes longer in ITALCS (shown in Figure 5.4).

Those problems are reduced in the following ways. For the first problem (spar-

sity in longitude), the data are interpolated every 20°of geographic longitude, keeping

the geographic latitude gap to 1°. This allows a smoother mesh plot as seen in Figure

5.5. However, the mesh data electric potential is smaller than values in the original

data set at certain points, e.g., (φ, λ) = (150°, latitude 80°), because interpolation is

now occurring between the points provided, so the extrema are smoothed.

Missing data at the edge of longitude are recovered by repeating the data set

periodically over the longitude intervals of [-200°, -180°], and [180°, 200°]. However,
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Figure 5.3. ITALCS Northern Hemisphere polar plot of FTLE values on 23 May 2014
18:00 UT. Integration time of τ = 10 minutes. This polar plot shows the effect of
interpolation errors and missing data on the resultant FTLE map.

missing data at the pole cannot be replaced without a more involved interpolation

process. While the area missing FTLE values after running ITALCS decreases after

solving the previous problems, as shown in Figure 5.6 and Figure 5.7, cumulative

missing FTLE values still occur. To prevent FTLE values from becoming “not-a-

number” (NaN) values from 88°to 90°latitude, I removed the velocity data poleward

of latitude 87°.
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Figure 5.4. ITALCS Northern Hemisphere polar plot on 23 May 2014 18:00 UT.
Integration time 1 hour, after interpolating to a coarser spatial grid.

5.2 Result

With the wider longitude grid for interpolation and accounting for spherical

domain longitude periodicity and pole region, the FTLE map using ITALCS is shown

in Figure 5.8. Tracer locations are computed by ITALCS for illustration. From the

particles’ movement in the northern hemisphere, LCSs can be interpreted by the

three tracers. Three tracers A,B,C are initialized at A0, B0, C0 and tracked over

time, ending at Af , Bf , Cf . Tracer C does not drift significantly. It is in a region

of relatively low FTLE value. This means that the plasma drift and deformation is

small. Tracers A and B are moving but in significantly different directions. This is

indicated by the strong LCS ridge in yellow lying between A0 and B0 in Figure 5.8.

Both tracers drift eastward, but then tracer A drifts strongly poleward. The LCS

indicates deformation of particles as part of the flow turns poleward (as with tracer
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Figure 5.5. Result of interpolation to 20°longitude interval, 10°latitude interval
grid. The interpolation errors causing multiple peaks and valleys in potential at
80°latitude has disappeared. However, the interpolation smooths out the peak
values of the data, e.g., at the longitude 180°, latitude 85°area.

A) and part does not (as with tracer B). It appears that tracer A approaches the

north geographic pole. Since the velocity data poleward of 88°was manually removed,

I expect that for further integration time, the tracer will remain at the location Af

location.

Compared with the past research mentioned in background Section 2.5, the

polar plot of the northern hemisphere has neither a horseshoe “U” shape nor a ”W”

shape. However, the LCS ridge that appears is oriented on the day side as with the

prior work. For an initial time of 18:00 UT, the local noon longitude is at -90°. This

means the LCS ridge is centered in the local morning sector, which is comparable to

the findings of prior work.
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Figure 5.6. ITALCS Northern Hemisphere polar plot on 23 May 2014 18:00 UT.
10 minutes integration time. Improves upsampling error, but includes smoothing
interpolation error of smaller potential value than the original data set, and missing
data near the pole.

As SAMI3 is a first-principles ionospheric model, the result might be more

representative of the ionospheric drift physics than previous work using ITALCS.

On the other hand, significant smoothing due to interpolation in longitude occurred.

Disconnected maximum FTLE values exist nearby the thickest LCSs, which might

be a result of the wide data grid used in interpolation of the electric potentials.
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Figure 5.7. ITALCS Northern Hemisphere polar plot on 23 May 2014 18:00 UT.
1 hour integration time. Include errors of smaller potential value than original data
set and missing data near the pole.
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Figure 5.8. Maps of LCSs derived from SAMI3 potential over the northern hemisphere
on 23 May 2014 18:00 UT, for 3 hours integration time. The color scale represents
the FTLE values ranging from 0 to 4 × 10−4 s−1. The initial longitude of tracers
A0, B0, C0 is φ = 160◦. Initial tracers A0, B0, C0 are at latitudes λ of 73◦, 69◦, and
65◦, respectively.
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CHAPTER 6

CONCLUSION

6.1 Summary

This thesis produced the first map of high-latitude ionospheric Lagrangian

coherent structures derived from a first-principles model of the ionosphere. In the

process, the thesis explored three methods of preparing SAMI3 plasma drifts for in-

put to the LCS computational tool ITALCS. Velocity fields input to ITALCS must

be expressed in the same coordinate system as the gridpoints, and the gridpoints

must be regularly spaced for ITALCS to compute the finite-time Lyapunov expo-

nent (FTLE) field, whose maxima define the LCS. A geographic grid was desired for

ease of interpretation of LCS location and for future comparison to polar cap patch

observations.

Two of the methods explored transformations of vector quantities for different

magnetic coordinate systems. The first method was a sequence of rotations between

the orthogonal local magnetic coordinate system and geographic coordinates. The

second method developed a way to construct tangent vectors from the non-orthogonal

curvilinear coordinates that characterize the modified apex coordinates (the native

grid of SAMI3). This method may help future researchers to work on vector rotations

and non-orthogonal vectors transformations for future use for input to ITALCS.

The final and most successful method for obtaining the velocity components

in the coordinates desired was to work directly with the electric potential output by

SAMI3 (instead of the velocity components), then numerically compute the negative

gradient and ~E × ~B drift in our coordinate system of choice (i.e., geographic). The

LCS resulting from this approach was a dayside LCS at approximately the auroral
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oval, but not one as extended as a full “horseshoe” shape, as prior studies using other

models and data found.

6.2 Future Work

To potentially increase the accuracy of the curvilinear tangent vector estima-

tion shown in Chapter 4:

• Use the eccentric-dipole equation to find hA: As mentioned in Chapter 4,

to confirm a simplified result, I used the centered dipole magnetic field model

L-shell equation to find hA. Although this allowed for verifying the method con-

cept by distinguishing simple velocity vector directions, this assumption may

lead to a distortion that affects data analysis. Therefore, I would argue that

following the method but substituting in an eccentric-dipole expression to find

hA or directly using Apex coordinate calculator should significantly improve

the accuracy. If an eccentric dipole expression is not readily available, a time-

varying specification of the magnetic pole’s coordinates (λ0, φ0) in Equations

(4.2)-(4.3) should also improve the accuracy.

• Use accurate λ0 and φ0 for 2014 data set: While following the Apex

longitude equation in paper , I used λ0 = 79°N, φ0 = 69°W [20]. As of 2014 the

magnetic pole is at approximately λ0 = 86°and φ0 = 206°[21], which will result

in different vector directions in Fig.4.11.

• Consider spherical coordinate in tangent vector approximation: From

Eq.(4.6) -(4.7), the vector is applied based on the assumption of minimal δφ for

tangent approximation. However, as the coordinate is based on spherical sys-

tem, calculation considering without the assumption improve the result quality.
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Several improvements can increase the completeness of the LCS maps made

derived from the electric potential (from Chapter 5). These primarily relate to in-

terpolation of the potential provided on an irregularly spaced geographic grid, to a

regular latitude and longitude grid.

• Higher resolutions ion velocity data to improve the plot accuracy:

Being provided an electric potential data set that enables interpolation over a

grid with a less than 20°longitude gap will improve the resolution of the FTLE

map.

• Filling the missing data in pole region: Recovering missing electric poten-

tial data in the polar region from 88°to 90°will improve the completeness of the

FTLE map and the accuracy of tracer movement in ITALCS.

• Improve interpolation: Selecting or writing a new interpolation method will

help to both keep peak potential values and smoothness between longitudes to

increase the accuracy. A new interpolation may also help to provide interpola-

tion over the pole.

Future work also includes comparing the LCS found for the 23 May 2014

event shown in Chapter 5 to observations of polar cap patches. A comparison of

polar cap patches to LCSs in the winter hemisphere is part of future work, targeted

for observations made in the years 2010 and 2014 [22].
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