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â3 z-axis of Intermediate coordinate frame A

C′© Camera coordinate frame with misalignment

x̂C′ x-axis of Camera coordinate frame C′
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from b̂ axis

xiii



elC Elevation angle (degrees) of Camera. Elevation angle of ẑC
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ABSTRACT

Global Navigation Satellite System Reflectometry (GNSS-R) relies upon de-

tecting the GNSS signals reflected off a surface and then analyzing the reflected signal

to obtain surface characteristics. GNSS-R has become one of the many additional

applications of the readily available GNSS signals [1], alongside more traditional re-

mote sensing of ionospheric monitoring [2], beyond the intended GNSS purposes of

providing position, navigation, and timing estimation.

In previous work, GPS signals reflected off Lake Michigan in Chicago have

been collected using a specially designed portable sensor suite [3]. The data collected

is then analyzed to differentiate between surface ice and water conditions, as well as

obtain other characteristic information such as surface reflectivity [4]. The goal is

to provide a way for remote sensing of seasonal ice formation beyond just satellite

imagery which can be affected by cloud cover. To confirm the validity of the GNSS-R

results there needs to be a separate reference against which to compare.

This work demonstrates the sensor fusion between camera and lidar to re-

construct the lake surface, to provide that truth reference for comparison against

the results of the GPS reflectometry signal processing. For this setup, the camera

provides visual information about the lake surface, while the lidar provides distance

information with respect to the sensor suite. Combining the data from the two sen-

sors allows backward projection of the camera image to reconstruct the lake surface

and its features. The backward projection relies upon knowledge of the camera’s

intrinsic properties alongside distance information of the features captured by the

camera. Each pixel of the camera image is then transformed to its 3D position rela-

tive to the sensor system. This produces a 3D map of the lake surface, as captured

by the sensors. The estimated point at which the GPS signal reflects off the surface,

the specular point, is calculated by the satellite position at the time of interest and

xix



the receiver location. This point is then mapped onto the reconstructed surface to

identify the exact location where the signal reflected and compare the surface visually

to the results from the signal analysis.

Time-varying camera-lidar-specular-point maps of the data campaigns con-

ducted for this project are created for comparison with the GPS signal analysis.

Multiple data campaigns were performed during which the Lake Michigan surface

had surface ice, water or a mixture of the two. The lake surface is reconstructed

for different timestamps, using the appropriate image frame and lidar frame. Com-

bining chronologically, the changes in the lake surface can then be observed along

with the movement of the specular point, due to the movement of the GPS satellites.

Any satellites passing over a boundary between water and ice on the lake surface are

identified and time stamped, to then be compared to the GPS signal analysis results

[3].

xx
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CHAPTER 1

INTRODUCTION

Global Positioning System (GPS), originally known as the NAVSTAR GPS,

is one of many constellations of Global Navigation Satellite Systems (GNSS) used for

geolocation and timing information. All that is required to make use of its capabilities

is a GPS receiver which over the years has made its way onto our phones, cars and

planes. However, with such a vast array of satellites transmitting data independently

without the need for the user to transmit any data back, they have been considered

for projects outside of their originally intended role. One such application is in remote

sensing using reflected signals, which when using GNSS satellites is known as Global

Navigation Satellite System Reflectometry (GNSS-R).

The idea behind this is simple: to use the already available GPS satellites as

transmitters and receive a GPS signal after it reflects off the surface of the Earth.

This signal is used to obtain any characteristic information required of the surface

that it reflected off. For this work, as part of the GNSS-R project at the IIT Space

Weather Lab, a mobile sensor suite was designed [5] to collect data comprising of

GPS antennae, a weather station, cameras, a lidar and supporting electronics. The

camera and lidar, although not dealing with the GPS signals directly are helpful

in providing supporting data on the surface, explained further in 1.1. Methods for

acquisition of the weak reflected GPS signals [6][7] and their processing to obtain

surface characteristics was performed.

1.1 Motivation

The GNSS-R project is based on using GPS signals to differentiate between

ice and water on the lake surface [4]. The GPS signal reflects off a particular point on
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the surface, known as the specular point. This point of reflection can be determined

using the position of the GPS satellite in its current orbit and the location of GPS

receiver, picking up the signal after it reflects off the surface. Analyzing the signal

obtained could potentially provide characteristics of the point on the surface this

signal reflected off of.

However, in all this there is no real visual way to prove the results. There is

a necessity to have a “truth” reference to compare against, which is where a camera

would help. Previous work done in this project used the lidar point cloud overlaid

with the GPS specular points map to obtain a sense of the surface conditions for

a truth reference [8][9]. While this does work, it is hard to decipher exact surface

conditions with the point cloud alone, which is why the inclusion of a camera is

beneficial.

The camera can save visual information about the surface and be used to see

where the specular point actually is and the surface features there. Reconstructing the

surface and then plotting the specular point on top would allow visual confirmation

of the lake surface conditions at the point of interest. This can then be compared to

the results obtained from analysis of the reflected GPS signal.

However, a camera alone is not enough to accurately identify the specular

point location in the image. This is because the 2D visual information from camera

is not enough to determine where the visible features are actually located in 3D space.

Reconstructing the lake surface from camera images would require additional depth

information. In this thesis it is done using a lidar. The lidar provides a point cloud

of the environment giving 3D coordinates for features detected. The only thing left

then is to combine the two and obtain visual data of the camera in 3D coordinates.



3

1.2 Prior Research

The general concept of camera-lidar sensor fusion is not new; it has been used

in the robotics and automotive fields among others for position and pose estimation.

Each sensor fills in for weaknesses of the other, the camera lacking depth informa-

tion but providing higher resolution visual data and the lidar with lower resolution

data but with depth perception. The sensors together are used for better feature

detection [10] and improved environment perception [11]. Backward projection using

lidar and camera fusion has been applied to indoor environment reconstruction [12].

Autonomous vehicles with camera-lidar setups also perform similar reconstructions

of their surrounding environment, especially for solid object feature detection [13].

Rather than navigation and attitude sensing, this project application involves

sensing the natural environment, particularly the lake surface. Previously studies

have been done to topographically map large water bodies. One such work used an

airborne lidar scanning the ground below [14]. The paper presented the problem of

lidar lasers not having enough reflectance off calm water bodies. The water bodies

were identified by the lack of lidar returns [15] and then an estimated water surface was

generated. A similar study, also using an airborne lidar for Water Surface Mapping

used a ratio index to identify water bodies. This paper identified the low reflectivity

of lidar off the water as well, using a spectral library created through tests by studies

done at JPL in California [16].

Previous studies have also been done to use only a camera for remote sensing

water using spectral analysis of the retrieved airborne camera images [17]. In previous

study, the researchers proposed a cheaper solution to multi-sensor or even expensive

sensor solutions as alternatives to satellite imagery. Where satellite imagery can be

influenced by cloud cover, the potential solution detailed in the paper mentioned

flying cameras in a plane, over the surface to be mapped.
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All of these studies sensed environments consisting of primarily solid surfaces

(e.g., urban streets in the case of autonomous vehicles) or primarily liquid surfaces

near solid ground with a defined boundary (e.g., river water surface mapping). In

this thesis work, we are interested in sensing a natural body of water whose surface

phase of matter varies spatially.

1.3 Contributions

The objective of this work is to provide a method to reconstruct the lake

surface in 3D, providing a truth reference to compare against the reflected GPS signal

processing results. The contributions made are as follows:

1. Developed a method to backward project a camera image, using lidar, to re-

construct the imaged environment in 3D coordinates

2. Demonstrated the camera-lidar projection method to reconstruct the lake sur-

face during surface ice conditions

3. Reconstructed lake surface during surface water conditions

4. Reconstructed lake surface during mixed surface ice and water conditions

Chapter 2 reviews the background principles of the camera and the lidar sen-

sors, and the backward projection concept. Chapter 3 describes the algorithm de-

veloped for computing the backward projection, explaining the processing performed

on the sensor data. Chapter 4 describes the lab tests performed when testing out

this algorithm. Chapter 5, Chapter 6 and Chapter 7 review the results from applying

the algorithm to data collected in field tests with lake surface ice, surface water and

mixed surface ice-and-water conditions, respectively. Finally, Chapter 8 summarizes

the results and describes future work.
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CHAPTER 2

BACKGROUND

2.1 Pinhole camera model

To perform the sensor fusion, the camera needs to be properly understood.

The camera is a device used to capture images of the real world. This is the most

important piece of the reconstruction process as it provides the visual information

of the environment that needs to be transformed. The camera is clearly a complex

device, but for the sake of the reconstruction, will be treated as a pin hole camera.

A simple pin hole camera model can be seen in Figure 2.1. According to this model

there is only a tiny aperture for light rays to pass through to project an image on the

sensor.

Figure 2.1. Simple Pinhole camera

Expanding on this model, Figure 2.2 shows the projection of a light ray from

some point of interest on an object, on to the sensor plane, in the camera coordi-

nate frame. According to this system, ẑC axis along the optical axis of the camera,

positive toward the direction the camera is facing. The x̂C axis and ŷC axis defining

the camera’s horizontal and vertical field-of-view directions respectively, which are
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parallel to the sensor plane. The position vector ~r P/O is the point of interest on an

object, represented as P, from the camera optical center O and position vector ~rQ/O

is the image of the point P on the sensor plane, represented as Q, from the from the

camera optical center O. The optical center is essentially the camera’s ”pinhole”. It is

important to note that the sensor plane is actually in the -ẑC direction at a distance

f behind the optical center O, with the image inverted. For ease of understanding,

the sensor plane is being projected in the same plane as the object, which would

technically make this the virtual image. However, the relationships and properties

remain the same while making this visually easier to interpret.

Some of the Intrinsic properties of the camera, also known as the camera

parameters, can be seen in Figure 2.2. The properties include the following:

1. Camera optical center. The camera optical center is the point where all the

light rays pass straight through with angle of incidence and angle of emergence

about this point being the same. In a pinhole camera the aperture, or simply

the hole, is the optical center. In more complex cameras with multiple lenses

it becomes more complex to locate the exact location. For this work, it is

considered to be at the center of the front face of the camera. The optical

center is also the origin of the camera coordinate system.

2. Optical axis. The ẑC is also known as the optical axis.

3. Focal length. The focal length f is the distance of the sensor plane away from

the camera optical center, along the optical axis.

4. Principal point. This is the point on the sensor plane which intersects with

the optical axis. As seen in Figure 2.2, the x and y coordinates of point Q

on the sensor plane are with respect to this point. Usually when dealing with

points on the sensor plane, it is treated as a 2D plane (as all points on the plane
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Figure 2.2. Object projected onto sensor plane

have the same third dimension with respect to the optical center, being f), the

principal point is considered the origin.

5. Pixel density. It is the number of pixels generated along each dimension of

the sensor. ku and kv represent the pixel density along the x̂C and ŷC directions

on the sensor.

6. Image resolution. The image generated has a certain number of pixels along

its horizontal dimension u referred to as ResH and vertical dimension v referred
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to as ResV , dependant on the sensor pixel density.

7. Distortion coefficients. Compared to an ideal pinhole camera, a modern

camera can have multiple sources of distortion. Thus, to model the camera

as a pinhole camera the distortion effects in the image must be removed. The

different types of distortion are modelled using distortion coefficients

These camera parameters are estimated using a process known as ’geometric camera

calibration’ or simply ’camera calibration’, also known as camera resectioning. This

is done using the Camera calibrator app further explored in Section 3.1.

There are other properties of a camera, such as the field of view (FOV), can be

determined from the intrinsic properties. The FOV is what viewing angle is observable

to the camera. This is generally broken down into the horizontal FOV (HFOV) and

vertical FOV (VFOV). The HFOV relates to the observable area visible to the camera

horizontally, measured as the angle θH which is the angular extent visible to the

camera in the ẑC x̂C plane. Similarly, the VFOV relates to the observable area visible

to the camera vertically, measured as the angle θV which is the angular extent visible

to the camera in the ẑC ŷC plane. Figure 2.3 shows this concept.

2.2 Image Distortion

To remove the distortion and represent an ideal pinhole camera, its necessary

to understand the types distortion. Figure 2.4 shows an image with distortion. The

distortion in the image is apparent when looking at the shelf to the left which seems

curved and even the tiles on the floor seem to bend more towards the edges of the

image, when in reality they are both straight. Cameras tend to have a mix of these

types of distortion. The distortions are modelled using distortion coefficients. These

model the pixel locations in the image with distortion and can be used to obtain the

undistorted pixel locations. For this work its important to note that the distortion
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(a) Horizontal FOV (b) Vertical FOV

Figure 2.3. Field of View of the camera

removal was performed by a built-in Matlab funtion, called ‘undistortImage’, as part

of the image processing toolbox. The distortion models, detailed below, are used by

the function to undistort the image. They are explained for the sake of understanding

the background behind the undistortion but are not a focus of this work.

Figure 2.4. Image showing lens distortion
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2.2.1 Radial distortion. A pinhole camera does not have any lenses but most

modern cameras do to further provide better images with sharper quality and wider

field of view (FOV). This comes at a cost as lens distortion is introduced into the

image. This occurs when light rays entering the camera bend more near the edges

of a lens than they do at its optical center, as can be seen in Figure 2.5. This is

common for camera lenses which are used to increase or decrease the visual FOV of

the camera.

Figure 2.5. Radial distortion

Radial distortion can be modelled using radial distortion coefficients as shown

by Equations 2.1 and 2.2 [18] [19]. Usually two coefficients suffice, however, in the case

of wide angle lenses which cause sever distortion, three coefficients can be included.

xdistorted = x(1 + k1 r
2 + k2 r

4 + k3 r
6) (2.1)

ydistorted = y(1 + k1 r
2 + k2 r

4 + k3 r
6) (2.2)

Where, x and y are the undistorted pixel locations of the image on the sensor plane,

along the x̂C and ŷC axis respectively. k1, k2, and k3 are the radial distortion co-
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efficients of the lens. Also r =
√
x2 + y2, is the radial distance from the principal

point.

2.2.2 Tangential distortion. This occurs when the lens and the sensor plane are

not oriented parallel to each other, as seen in Figure 2.6. This is generally caused by

defects in the camera assembly.

Figure 2.6. Tangential distortion

Tangential distortion, similar to radial distortion, can be modelled using tan-

gential distortion coefficients as shown by Equations 2.3 and 2.4 [18] [19].

xdistorted = x+ [2 p1 x y + p2 (r2 + 2 x2)] (2.3)

ydistorted = y + [p1 (r2 + 2 y2) + 2 p2 x y] (2.4)

Where, x and y are the undistorted pixel locations of the image on the sensor plane,

along the x̂C and ŷC axis respectively. p1, and p2 are the tangential distortion co-

efficients of the lens. Also as before, r =
√
x2 + y2, is the radial distance from the

principal point.
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2.2.3 Shear distortion. Camera sensors can tend to have defects which can

sometimes cause the axes of the image to not be perpendicular, also known as shear

distortion shown in Figure 2.7(b). This is modelled using a skew parameter s. If

the skew parameter is zero then there is no skewness and the pixels are rectangular,

however, if the skew parameter is non-zero then the pixels in the image are assumed

to be more of a parallelogram shape with some skewness angle α shown in Figure

2.7(a). For this work the skewness is assumed to be negligible.

(a) (b)

Figure 2.7. (a) Skewed pixel, (b) Shear distortion in image

2.3 Forward projection

Before being able to transform a camera image into a reconstructed environ-

ment, it is necessary to first understand how a camera obtains its image from the

environment. This process is known as forward projection, where light rays from

the environment are captured by the camera to create an image. This process can

be broken down into multiple steps. The light rays from the environment are first

captured onto the camera sensor, before the sensor converts them into image pixels.

Looking back at Figure 2.2, the vectors ~r P/O and ~rQ/O are collinear and can

have their components related, as shown by Figure 2.8, using similar triangles, pro-

viding Equations 2.5 and 2.6.
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Figure 2.8. Similar triangles relating components of Point P and Image Q

x = f
XC

ZC

(2.5)

y = f
YC
ZC

(2.6)

These equations can be formulated into matrix form, as shown in Equation

2.7, where the Perspective projection matrix Pm transforms the camera coordinates

XC , YC , ZC into sensor plane coordinates x, y. Factoring out 1
ZC

, it can also be

written in the form shown in Equation 2.8, where the camera coordinates, position

vector ~r P/O, are transformed into the sensor coordinates. the third row is included

to make a square matrix that is invertible.
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x

y

1


=


f 0 0

0 f 0

0 0 1


︸ ︷︷ ︸

Pm



XC

ZC

YC

ZC

1


(2.7)

=
1

ZC


f 0 0

0 f 0

0 0 1




XC

YC

ZC


(2.8)

Image pixels have their coordinate system origin at the top left of an image.

Therefore before converting the Image from sensor coordinates into image pixel co-

ordinates, the origin has to be translated as shown in Figure 2.9(a) and formulated

in Equation 2.9. Position vector ~rQ/S0 are the 2D coordinates of the image point Q

on the sensor plane from the principal point S0. Position vector ~rQ/I0 are the coor-

dinates of the Image point Q from the pixel coordinates origin I0. Position vector

~r S0/I0 shows the the principal point S0 from the pixel coordinates origin I0.

~rQ/I0 = ~r P0/I0 + ~rQ/P0 (2.9)

=

x0
y0

+

x
y



=

x0 + x

y0 + y


From here converting to the image plane in pixels depends on knowledge of

the sensor pixel resolution. The camera sensor contains light-sensitive spots called

photosites, which record light information that falls on them. These are laid out in a
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(a) Sensor plane in world coordinates (usually millimeters)

(b) Image plane in pixels

Figure 2.9. Sensor plane coordinates converted into Image pixel coordinates
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grid and correspond to pixels in the image generated. The coordinates of these pixels

is with respect to the û axis which is aligned horizontally, pointing to the right of the

image, and v̂ axis which is aligned vertically, pointing to the bottom of the image,

as shown in Figure 2.9(b). The pixel density, designated by ku and kv along the û

and v̂ directions respectively, is the number of pixels per mm along each length of the

sensor. Thus, knowing the position of the image projection on the sensor and this

density allows conversion into pixels. This is shown in Figure 2.9(b) where point R

is the projected point of interest Q transformed into the image pixel plane, in pixel

coordinates u and v. Building upon Equation 2.9, the transformation to image pixels

is shown in Equation 2.10. u
v

 =

ku (x0 + x)

kv (y0 + y)

 (2.10)

Separating Equation 2.10 into individual matrices and adding an extra di-

mension to create a square matrices, the result is Equation 2.12 which shows the

conversion from sensor plane coordinates x, y into image pixel coordinates u, v.
u

v

1


=


ku 0 0

0 kv 0

0 0 1




1 0 x0

0 1 y0

0 0 1




x

y

1


(2.11)

=


ku 0 ku x0

0 kv kv y0

0 0 1




x

y

1


(2.12)

Combining Equations 2.7 and 2.12 the complete transformation from camera

coordinates to pixel coordinates is attained, also known as forward projection, as

shown by Equation 2.14. Matrix K is known as the Calibration matrix, made up of
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the intrinsic properties of the camera. The third row is added here to make matrix

K invertible. 
u

v

1


=


ku 0 ku x0

0 kv kv y0

0 0 1




f 0 0

0 f 0

0 0 1





XC

ZC

YC

ZC

1


(2.13)

=


ku f 0 ku x0

0 kv f kv y0

0 0 1


︸ ︷︷ ︸

K



XC

ZC

YC

ZC

1


(2.14)

If skew distortion was considered then an s term would be added to the cali-

bration matrix K as shown in Equation 2.15 and f would no longer be the same in

the x and y directions on the sensor, introducing fx and fy instead. However, for this

work, it is assumed that there is zero skew in the camera sensor.

K =


ku fx s ku x0

0 kv fy kv y0

0 0 1


(2.15)

Equation 2.14 can be simplified by factoring out 1
ZC

, obtaining Equation 2.16

with vector P representing 3D camera coordinates of a point of interest being pro-
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jected and vector R representing the pixel coordinates of the point.
u

v

1


=

1

ZC


ku f 0 ku x0

0 kv f kv y0

0 0 1




XC

YC

ZC


(2.16)

[
R

]
=

1

ZC

[
K

] [
P

]
(2.17)

2.4 Backward projection

For backward projection the goal is to do the opposite of the forward projec-

tion, where the pixel coordinates are known and the 3D camera coordinates must

be determined. For this, inverting Equation 2.16 produces the required backward

projection, shown in Equation 2.19.[
P

]
= ZC

[
K

]−1 [
R

]
(2.18)

XC

YC

ZC


= ZC


ku f 0 ku x0

0 kv f kv y0

0 0 1



−1 
u

v

1


(2.19)

Its important to note that to obtain all the Camera coordinates, backward pro-

jection still requires one of the camera coordinates to be known, namely the ZC depth

component. The calibration matrix K is built with the known intrinsic properties of

the camera and the image pixel coordinates are obtained from the image.

2.5 LiDAR

The lidar, abbreviated from Light Detection and Ranging, is a device used in

remote sensing applications for range detection. A laser is emitted, which bounces off

an object in the environment back to the sensor. Knowing the speed of light and the
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time it took from emitting the laser to detecting it, the exact distance of the object

can be determined. This is shown in Equation 2.20 where dL is the distance of the

object from the lidar, c is the speed of light in air and t is the time of flight of the

pulse. The reason its divided by 2 is because the light travels twice the distance, from

the lidar to the object then back. In most commercial lidar sensors, there are usually

multiple pulsating lasers and rotating parts to allow for more area to be covered, being

the effective FOV of the lidar. Figure 2.10 shows the concept behind the working of

a lidar.

dL =
c t

2
(2.20)

Figure 2.10. The concept behind LiDAR

The lidar sends out many laser pulses as it sweeps its FOV. This produces a

point cloud, which is just a 3D map of all the laser returns plotted at the distance they

were calculated to be reflected back from. This can be used to map the environment in

3D world coordinates. Figure 2.11 shows a point cloud generated by a lidar attached

to the roof of a car. The color of the points can be set by the user to show distance,

return intensity, object identity or other variables.

The lidar has its own coordinate system about which it provides its point

cloud data. This lidar reference frame has its origin at the center of the lidar with

the ŷL axis, pointing forward with respect to the sensor, along which the azimuth

and elevation angles of any returns are 0. The ẑL axis points normal to the sensor
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mounting surface and the x̂L axis, relatively speaking points right, completing the

right handed coordinate system. For this work, the lidar is used to obtain the depth

information required for backward projection. The ZC values, being the depth infor-

mation in question, are obtained through the use of the lidar, even though there is

more processing of the lidar data required before obtaining the ZC , which is explained

further in Chapter 3.

Figure 2.11. A point cloud generated from lidar mounted on top of a car (at the
origin with red, green, and blue body axes) as viewed from above the vehicle. [20]

The lidar used for this work, operated at a 900 nm wavelength, making it

infrared light. It is invisible and not dangerous to the naked eye, making it easy

to work with. The exact specifications of the lidar used can be seen in Appendix

B. This lidar is designed for modelling environments with solid structures such as

cars, poles and walls. However, it struggles to obtain returns from liquid water

surfaces, as the reflectively of light at this wavelength is low on such surfaces [16].

The effect of this is shown later in some of the field tests with lake water conditions.

This interaction makes it good for identifying water surface conditions but bad for

surface reconstruction. A little creativity was necessary to be able to still perform

the backward projection regardless of the scarcity of lidar returns, further detailed in

the water surface field test in Chapter 6.
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This lidar in question also not only sweeped 360◦ around itself, giving it a 360◦

horizontal FOV, but also had multiple laser channels a couple degrees apart vertically,

giving it a 30◦ vertical FOV. Figure 2.12 shows a top view, being the horizontal FOV,

and a side view, being the vertical FOV, diagram of the laser pulses emitted by

the lidar. The angular separation between the laser pulses is smaller horizontally as

compared to vertically. This makes it have a denser resolution horizontally and gives

the point clouds their iconic line-like features.

(a) Top view

(b) Side view

Figure 2.12. Lidar laser pulses defining its FOV
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CHAPTER 3

BACKWARD PROJECTION ALGORITHM

The concept behind the backward projection, as explained in Chapter 2, re-

quires more processing of the actual data obtained from the sensors. Steps must be

taken before eventually using the data for the surface reconstruction. Equation 2.19

shows the matrix manipulation to convert each individual pixel of a camera into its

respective 3D coordinate in the Camera reference frame. A flowchart of the process

of performing this on an entire camera image can be seen in Figure 3.1

3.1 Matlab camera calibrator app

The camera image obtained cannot be used immediately and requires some

post-processing. To accomplish this the camera properties must be known. As shown

in the first column of the flowchart in Figure 3.1, the Camera Calibrator app, part of

the Image Processing Toolbox in Matlab, is used. These parameters, which include

distortion parameters, focal length, principal point and image resolution, are used to

remove distortions as well as provide the camera calibration matrix K to perform the

forward and backward projections.

To obtain the aforementioned parameters, calibration must be performed using

the application. This requires using a checkerboard pattern as a calibration target. In

this case the checkerboard pattern printed out is taped onto a large piece of cardboard

for support. Multiple images are input with the checkerboard pattern in view of the

camera, at different angles along with the size of the checkerboard squares. This

is seen in Figure 3.2, where the application identifies the intersecting points of the

checkerboard squares and comparing the real world distance between these points

(provided as an additional input) to the pixel distances in the images, calculates the
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Figure 3.1. Flowchart of the full backward projection algorithm
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desired parameters [21]. As shown in the flowchart in Figure 3.1, the calibration to

obtain camera parameters is a one-time action. These are properties of the camera

itself so do not change. They are then used when processing images from the camera

obtained during lab tests and field data campaigns.

Figure 3.2. The Camera Calibrator App in Matlab

3.2 Remove distortion

Following along in the the second coloumn of the flowchart in Figure 3.1, the

image must be processed as well. To model the camera as a pinhole camera requires

removing the distortion of the image caused by the lens and other sources. As ex-

plained in Section 2.2, this distortion is modelled using distortion parameters obtained

through the camera calibration app and is used predicts where the undistorted pix-

els coordinates should have been without the distortion. The distortion is removed

using Matlab function ‘undistortimage’, part of the image processing toolbox. The

distortion coefficients are provided to the function alongside the distorted image and

it undistorts the image using the built-in distortion models which were described in
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the previous chapter. It is still worth looking at the process of distortion removal.

While the models operate in physical distance units, they can still be used in

images with pixel coordinates, as the resolution of the image is proportional to the

sensor dimensions. Figure 3.3(a) shows hypothetical pixel locations of a distorted

image. The image is assumed to have Barrel distortion, so in this situation the pixels

should have been generated by light further out if the lens had not refracted the light.

So based on the undistorted coordinates proposed by the model using the distortion

parameters, the pixels are moved to new locations, shown by Figure 3.3(b), where

the blue arrows represent the shifting of the pixels to their new coordinates.

(a) (b)

Figure 3.3. Shifting pixels to undistort image with barrel lens distortion [22]

A good example of this is an image taken in the lab of a checkerboard pat-

tern, shown in Figure 3.4(a). The image shows the effect of lens distortion with the

checkerboard pattern being warped. The way that it warps the image shows that

it is barrel distortion. Thus, using the distortion parameters the image pixels are

remapped to new locations to undistort the image, as shown in Figure 3.4(b). Notice

how the image has black areas which are regions where there is no light information.

The light rays for these parts never fell onto the sensor. Also note that the resolution
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of the image also changed. This is because the barrel distortion occurs when the

lens of a camera increases the FOV refracting light from wider FOV inwards onto

the sensor. The pixels generated would have otherwise fallen further outside as in-

dicated after shifting the pixels and interpolating in between to fill in the he newly

formed gaps. Needless to say the actual sensor does not change size and its resolution

remains what it originally was. Therefore, the image must be cropped out to the

original resolution, where those pixels that would fall outside the sensor are removed.

This is shown in Figure 3.4(c) with the red box indicating the cropped image, which

is seperately shown in Figure 3.4(d).

The image is then successfully undistorted and should be an accurate repre-

sentation of one generated from an ideal pinhole camera. The pixel information can

then be extracted from the image. Each pixel would have some u and v coordinate

identifying its location in the image and RGB values identifying its color. RGB stands

for Red Green Blue which are the primary colors of light. The RGB identifies the

percentage of Red Green and Blue to make the color for the pixel at the location of

interest.

3.3 Transform lidar point cloud to camera coordinate system

Finally, the third column in the flowchart in Figure 3.1 deals with lidar point

cloud processing. Since the lidar point cloud obtained is in the lidars own coordinate

system, it is necessary to transform the obtained point cloud to the camera coordinate

system before being able to use both, the camera and lidar data, together. Figure

3.5 shows the coordinate frames on the sensor suite of the GNSS-R equipment. The

camera and lidar can be seen in the center of the mast, while two GPS receivers are

seen attached to the end of the boom on top of the mast, protruding out over the

lake.
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(a)

(b)

(c)

(d)

Figure 3.4. Removing barrel distortion from an image
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Figure 3.5. The different coordinate frames for the GNSS-R sensor suite

The boom coordinate frame B© consists of unit vectors t̂, b̂, û, in which the b̂

axis is along the direction of the boom, pointing horizontally out towards the lake, the

û axis pointing straight up, perpendicular to the ground, and the t̂ axis representing

the transverse direction completing the right handed coordinate system. The lidar

body coordinates L© consist of the ŷL axis along the forward direction of the lidar,

ẑL the axisymmetric direction, positive away from the surface the lidar is mounted

on, and x̂L axis completing the right handed system. The camera coordinate frame

C©, as also explained earlier, consists of the ẑC axis along the optical axis of the

camera, positive toward the viewing target, and the x̂C axis and ŷC axis defining

the camera’s horizontal and vertical field-of-view directions, pointing to the right and

down respectively.
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The lidar point cloud obtained is initially in the lidar coordinate frame L©
relative to the lidar origin L0 and must be transformed to the camera coordinate

frame C© and expressed with respect to camera origin C0. This is done through a

translation and a series of rotations, as follows.

3.3.1 Translation from lidar origin L0 to camera origin C0. Once the

coordinate system is rotated, all that is left is translating the origin. The lidar point

cloud originally has its origin at the center of the lidar, L0. This must be translated

to the origin of the camera C0, being its optical center, as shown as point O in Figure

2.2. Since the camera is being assumed as a pinhole camera, the exact position of

this optical center is assumed to be the center of front face of the camera.

The translation of the position vector ~r
P/L0

C of point P relative to the lidar

origin L0 to the position vector ~r
P/C0

C of point P relative to the camera origin C0 is

shown in equation 3.1, where ~r
L0/C0

C is the relative position vector of the lidar from

the camera. This can be seen in Figure 3.6.

~r P/C0 = ~r P/L0 + ~r L0/C0 (3.1)

Figure 3.6. Translation of the Origin from Lidar to Camera

3.3.2 Rotation from Lidar frame L© to Boom frame B©. The lidar has

an elevation angle elL with respect to the boom, defined as the angle between b̂ and
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ŷL in Figure 3.7. For position vector ~r
P/C0

L of an arbitrary point P relative to the

Camera origin C0, we rotate the x̂L,ŷL,ẑL to t̂,b̂,û as shown in Figure 3.7 using the

matrix BRL:

~r
P/C0

B = BRL ~r
P/C0

L (3.2)

BRL =


1 0 0

0 cos (elL) − sin (elL)

0 sin (elL) cos (elL)


(3.3)

Figure 3.7. Rotation of the lidar frame L to boom frame B

3.3.3 Rotation from Boom frame B© to Camera frame C©. In general a rigid

body attitude with respect to a reference coordinate system may be described by up

to three Euler angles. The next sequence of rotations describes the transformation

from the boom coordinate frame to any one camera’s coordinate frame.

1. Rotation from Boom frame B© to Intermediate frame A©. Going from

boom coordinate frame B© to Camera coordinate frame C© requires two rotation

as the camera is rotated by an elevation angle elC and an azimuth angle azC ,
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with respect to the boom. Thus, one rotation must be made to an intermediate

reference frame A© before rotating to the Camera reference frame C©. The boom

reference frame B© is rotated by azimuth angle azC to obtain the intermediate

reference frame A© as shown in Figure 3.8.

The position vector ~r
P/C0

B of point P relative to the camera origin C0, is trans-

formed from the t̂,b̂,û to â1,â2,â3 coordinates as shown in Figure 3.8 using the

matrix ARB:

~r
P/C0

A = ARB ~r
P/C0

B (3.4)

ARB =


cos (azC) − sin (azC) 0

sin (azC) cos (azC) 0

0 0 1


(3.5)

Figure 3.8. Rotation of the Boom frame B to Intermediate frame A

2. Rotation from Intermediate frame A© to intermediate camera frame

C′©. A final rotation is required to rotate from the intermediate frame A© to

camera frame C′©. This rotation is performed along the shared axis as shown

in Figure 3.9 by the camera elevation angle elC .
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For the position vector ~r
P/C0

A of point P relative to the camera origin C0, we

rotate the â1,â2,â3 to x̂C′ ,ŷC′ ,ẑC′ , as shown in Figure 3.8 using the matrix C′
RA:

~r
P/C0

C′ = C′
RA ~r

P/C0

A (3.6)

C′
RA =


1 0 0

0 sin (elC) − cos (elC)

0 cos (elC) sin (elC)


(3.7)

Figure 3.9. Rotation of the Intermediate frame A to Camera frame C′

3. Rotation from intermediate frame C′© to Camera frame C©. From

the GNSS-R hardware that was used during data collection, it was found that

Camera 1 was slightly misaligned. This was determined to be a manufacturing

defect of the camera mount used to attach the camera. This can be seen in

Figure 3.10 where the sensor suite is seen from front, the -b̂ axis direction.

The vertical line indicates the plane created by the b̂ and û axes and the blue
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dashed line represents the optical axis. Camera 1, based on the hardware setup

indicated in Appendix D, with azC=0 and elC=-90◦ should have its optical axis

on the b̂-û plane pointing in the −û direction. However, here it can be seen to be

misaligned to the left. Figure 3.10(a) shows the camera, pointing down, with a

-90◦ elevation with respect to the b̂ axis. The optical axis should be in line with

the û axis and perpendicular to the b̂ axis. Figure 3.10(b) shows the camera

pointing forward, with 0◦ elevation with respect to the b̂ axis. Here the optical

axis should be in line with the b̂ axis and perpendicular to the û axis. In both

cases it can be seen that the camera has some deviation. Upon close inspection

the camera seems to be rotated slightly about its own ŷC axis. This angular

deviation of the camera about its ŷC axis is designated as the misalignment

angle δ.

To correct for this, a final rotation is required to rotate from the intermediate

camera frame C′© to the camera frame C©. This rotation is about the ŷC′ axis

by the misalignment angle δ between the ẑC and the ẑC′ axes. We rotate the

x̂C′ ,ŷC′ ,ẑC′ to x̂C ,ŷC ,ẑC , as shown in Figure 3.11 using the matrix CRC′
:

~r
P/C0

C = CRC′
~r
P/C0

C′ (3.8)

CRC′
=


cos (δ) 0 − sin (δ)

0 1 0

sin (δ) 0 cos (δ)


(3.9)

3.4 Crop lidar point cloud to camera FOV

The lidar point cloud can be merged together with the camera image at this

stage. It is important to note that the lidar FOV may not be the same as the camera

FOV. The points that are not visible to the camera can be cropped out. Figure 3.12 is

an illustration of the camera FOV overlapping with lidar returns. The points (gray)
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(a)

(b)

Figure 3.10. Camera 1 misalignment about its ŷC axis



35

Figure 3.11. Rotation of the Camera frame C′ to Camera frame C

outside the FOV of the camera are cropped out leaving only the points inside the

FOV (blue).

To determine which points lay in the FOV, the coordinates XC , YC , ZC of

the point cloud points are used to obtain their azimuth and elevation angles with

respect to the camera optical axis. The azimuth angle with respect to the ẑC axis

is determined using tan−1
XC

ZC
and the elevation angle with respect to the ẑC axis is

determined using tan−1
YC

ZC
. Points that do not satisfy the conditions provided in

Equations 3.10 and 3.11 are cropped out. θH and θV are the horizontal FOV and

vertical FOV angles, respectively. The θH and θV are bisected by the ẑC axis and so

the angle from the axis to the maximum FOV of the camera can be calculated as half

the FOV for both horizontal and vertical cases. In both cases the magnitude of the

azimuth and elevation angles must less than or equal to half the horizontal FOV or

vertical FOV respectively, so the absolute values are compared. These conditions are

shown visually in Figure 3.13(a) and Figure 3.13(b).
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Figure 3.12. Crop lidar point cloud based on camera FOV

∣∣∣∣tan−1
XC

ZC

∣∣∣∣ ≤ ∣∣∣∣θH2
∣∣∣∣ (3.10)∣∣∣∣tan−1

YC
ZC

∣∣∣∣ ≤ ∣∣∣∣θV2
∣∣∣∣ (3.11)

3.5 Overlay lidar point cloud onto image plane

Once the lidar point cloud is cropped, the points must be overlaid onto the

image plane. The points must be transformed from their camera coordinates into pixel

coordinates using forward projection. This requires using Equation 2.16 to perform

the projection. However, testing the forward projection in the lab, using a set of

boxes, resulted in a significant amount of error, as shown in Figure 4.5(a), where the

projected lidar point cloud is overlaid on top of the image in pixel coordinates. The

color bar shows the ZC values of those points. The projected lidar points do not align

well with the features in the image which is apparent when looking at the edges of

the boxes. The edges of both boxes in the image do not line up with the edges of
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(a)

(b)

Figure 3.13. Determining which lidar points are within the camera FOV
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the same boxes in the lidar point cloud. This same issue can be seen in the directly

behind the larger box on the right. The potential reasons for this error could be:

1. Lidar translation to camera origin. There is some uncertainty in the exact

location of the lidar origin and more specifically camera origin. The camera

origin is assumed to be in the center front face of the camera as it would be in

case of a pinhole camera. The actual camera origin, the optical center, would

be different due to the camera optics.

2. Inaccurate K calibration matrix. If the camera parameters making up the

matrix were not good estimates, then the matrix K would not produce the

correct projections.

3. Inaccurate removal of image distortion. The distortion coefficients ob-

tained by the camera calibrator app may not have been accurate. This may

cause the undistorted image to retain some of the warping from the distortion

sources and not allow it to align well with the projected lidar point cloud.

Thus, a method using ratios was devised to approximate the projection of the

points into the image plane. This method then approximates the projected pixel

position using the ratio of the azimuth and elevation angles of the lidar points, being

tan−1
XC

ZC
and tan−1

YC

ZC
, to the horizontal FOV and vertical FOV of the camera re-

spectively. Going into the details, for the transformation of the lidar points to their

projected uL coordinate along the û direction in the image, the ratio between the

azimuth angle of the point and half the horizontal FOV angle is taken. The FOV

angle is divided by half as the ratio is from the ẑC axis to the edge of the FOV. This

ratio is used on the horizontal resolution ResH , basically the number of pixels along

the û direction, to determine where it would lie, as shown in Figure 3.14 and Equa-

tion 3.12. Similarly, for the transformation of the lidar points to their projected vL
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coordinate along the v̂ direction in the image, the ratio between the elevation angle

of the point and half the horizontal FOV angle is taken. The ratio determines where

the pixel will lie based on the vertical resolution ResV , the number of pixels along

the v̂ direction, shown in Figure 3.15 and Equation 3.13. The closer the point is to

the maximum FOV of the camera, the closer this point will be to the edges of the

image and vice versa.

The results of this new method can be seen to be better, in Figure 4.5(b).

The lidar point cloud overlaid onto the image seems to align better with the features

in the image. The points closer to the camera can be identified by their ZC values,

indicated by the colorbar, can be seen to overlap the image of the box well. The edges

of the box are identified in the point cloud by the sudden change of color where the

ZC values change from being closer to the camera, i.e. on the box surface, to being

further away, i.e on objects behind the box, right at the edge of the image of the box.

The edge of the box in the point cloud coincides with the edge of the box in the image

it is overlaid onto.

uL =

tan−1
XC

ZC

θH
2

× ResH
2

+
ResH

2
(3.12)

vL =

tan−1
YC
ZC

θV
2

× ResV
2

+
ResV

2
(3.13)

This method is an alternate to the forward projection and only provides an

approximation of the pixel location. That is because the assumption here is that the

angle of light rays from the optical axis is directly proportional to the radial distance

of the projected image from the principal point, on the sensor plane. This would

only be true if the sensor plane were curved with a radius of f about the optical

center. However, since the sensor plane is actually flat, the actual radial distance

of the projected image from the principal point is not linearly related to the angle
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Figure 3.14. Determining horizontal pixel coordinate through alternate method to
forward project lidar points into image
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Figure 3.15. Determining vertical pixel coordinate through alternate method to for-
ward project lidar points into image
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of light rays from the optical axis. Because of this assumption, this method would

have more error the further away from the principal point the pixel needed to be

calculated. Hence the pixels projected near the edges of the image would have the

most error.

This seems to work better likely because it circumvents the need for the K

matrix and any error it might have. In the rest of this work, this implementation is

used instead of the K matrix for the forward projection. If the source of error is from

the camera calibration then this method estimates the pixel locations with out the

need to use the camera properties obtained from calibration.

3.6 Interpolate the overlaid points in the Image

The lidar points projected onto the image plane do not map one-for-one onto

every pixel, so not every pixel in the image has a ZC value. To cover the whole image

the lidar points on the image must be interpolated over the entire resolution of the

image. This interpolation must be performed over a grid with the same resolution as

the image, allowing for each pixel to obtain a ZC value.

For this the Matlab function ‘scatteredInterpolant’ is used, which interpolates

over irregular data. The function generates an interpolant for the lidar points which is

evaluated at various query points. The function is set to perform linear interpolation

about the grid, but is also set to not extrapolate the data.

In this case, the projected lidar points do not lie on a neat grid pattern in

the image and are ”scattered” about the image, with no specific order. In our case

the query points are points on a grid with the same size as the image resolution, to

produce interpolated values. This selection not to extrapolate means that the function

will interpolate between the lidar points, but if the interpolation grid extends over to

part of the image with no lidar coverage around, then there will be no interpolation
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performed here. Those pixels are simply left without a ZC value. The reason for

this choice was the extrapolation was not considered accurate enough and so disabled

entirely.

3.7 Backward project Image

At this point all the necessary information is available to perform backward

projection on each pixel. The camera calibration matrix K is built using the camera

parameters obtained from the camera calibrator app. The undistorted image is used

to obtain the pixels and their corresponding pixel coordinates. And after the inter-

polation, of the overlaid lidar points in the image plane, each pixel has a ZC value.

The backward projection can then be performed using Equation 2.19. Its important

to note that this is a pixel-by-pixel process, where the backward projection is per-

formed on each individual pixel to obtain its 3D camera coordinates XC ,YC ,ZC in the

camera coordinate frame. Each pixel can then be plotted with these coordinates with

its respective color (RGB) value. This produces a mapping of the pixels in camera

coordinates.

3.8 Rotation of pixel point cloud to ENU coordinates

Once the pixel point cloud is generated, the environment has successfully been

reconstructed, however, it is not of much use in camera coordinate frame. Thus, the

point cloud must be rotated to a different coordinate frame. For the other sensors

and equipment involved in this GNSS-R project, the Boom coordinate system t̂, b̂, û

is an important one, as it is used as the main body-fixed coordinate system for the

entire assembly. Moreover, when GPS satellites or other objects/systems, external to

the sensor suite, need to be considered, the East-North-Up (ENU) coordinate system

is far more useful. The ENU coordinate system consists of the ê axis pointing towards
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Figure 3.16. Backward projection of 2D image producing a 3D pixel point cloud

East, n̂ axis pointing towards North and û pointing straight up.

3.8.1 Rotation from Camera frame C© to Boom frame B©. This involves

the rotation matrices, devised earlier at Equations 3.7 and 3.7, between the Boom

frame B© and the Camera frame C©. The position vector ~r
P/C0

B of point P (arbitrary

point from the pixel point cloud) relative to the camera origin C0, is transformed

from the x̂C ,ŷC ,ẑC to t̂,b̂,û.

~r
P/C0

B = BRC ~r
P/C0

C (3.14)

= [CRB]−1 ~r
P/C0

C (3.15)

= [CRC′ C′
RA ARB]−1 ~r

P/C0

C (3.16)

= [ARB]−1 [C
′
RA]−1 [CRC′

]−1 ~r
P/C0

C (3.17)

= [ARB]T [C
′
RA]T [CRC′

]T ~r
P/C0

C (3.18)

Where ARB was defined at Equation 3.5, C′
RA was defined at Equation 3.7 and CRC′
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was defined at Equation 3.9.

3.8.2 Rotation from Boom frame B© to ENU frame E©. Rotating from

the boom coordinate frame B© to the ENU coordinate frame E© requires rotation by

heading angle µ, which is measured as the angle of the boom b̂ with respect to n̂ and

defined as positive east of north. The rotation is shown in Figure 3.17. Both the

Boom and ENU frames share the same û axis about which this rotation is performed.

The position vector ~r
P/C0

B of point P relative to the camera origin C0, is trans-

formed from the t̂,b̂,û to ê,n̂,û coordinates as shown in Figure 3.17 using the matrix

ERB.

~r
P/C0

E = ERB ~r
P/C0

B (3.19)

ERB =


cos (µ) sin (µ) 0

− sin (µ) cos (µ) 0

0 0 1


(3.20)

Figure 3.17. Rotation of the Boom frame B to ENU frame E
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3.9 Translation of pixel point cloud to other origin

The pixel point cloud is also generated with the origin at the camera. The

eventual goal of this work is to provide a truth reference against which to compare the

GPS processing results, which means the information generated by this processing

must be placed in the frame of reference. To ensure this, the pixel point cloud is

translated to the same origin as used by the GPS results. Usually this is the reflected

signal antenna, which is the one collecting the reflected GPS signal off the lake surface.

The origin of the reflected antenna is An0. This translation will not be shown in this

work, but is provided here for completeness.

~r P/An0 = ~r P/C0 + ~rC0/An0 (3.21)

Figure 3.18. Translation of the origin from camera to reflected antenna
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CHAPTER 4

TESTING BACKWARD PROJECTION IN LAB

Before the backward projection method was used on data obtained for the

GNSS-R project, it was tested experimentally in the lab. Two types of test were

conducted. The camera used for these tests was the GW 5037 IP, with more details

on the camera in Appendix A, which was calibrated beforehand with all of the camera

parameters already obtained. The purpose of the first test was to backward project

individual pixels with the camera alone. This test was conducted in two parts with

a checkerboard pattern which was was mounted on the wall with the camera facing

it perpendicularly for the first part and then laid down on a table with the camera

facing it at an angle for the second part. The method and results of this test are

described in Section 4.1.

The purpose of the second test was to demonstrate the lidar point cloud overlay

and full image backward projection. For this test, two cardboard boxes were placed

on the floor in the FOV of the camera and the scanning FOV of the lidar. The method

and results of this test are described in Section 4.2.

4.1 Camera-only test: backward projecting individual pixels

4.1.1 Checkerboard pattern perpendicular to optical axis. In this test,

backward projection was performed on selected single pixel target points. The back-

ward projection estimates of XC , YC are compared to manual measurements of the

target points in physical space.

The camera was pointed perpendicularly at a checkerboard pattern, i.e., the

optical axis was normal to the checkerboard paper mounted on the wall. The physical
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checkerboard was manually marked with four target points of interest. The image

of the pattern is seen in Figure 4.1, where four points are identified alongside the

principal point. Since the camera optical axis ẑC was normal to the wall, all points

on the checkerboard pattern had the same ZC coordinate, which was the distance

from the lens of the camera to the principal point. The distance ZC to the wall,

and thus to the checkerboard pattern, was measured, using measuring tape, to be

ZC = 1.06 m. The pixel coordinates u, v of each of the target points were identified

in the image and used to perform backward projection to obtain estimated camera

coordinates X̂C , ŶC of each of the target points.

The estimated X̂C , ŶC were compared against “true” camera coordinatesXC , YC

of the points. The true camera coordinates were obtained by manual measurement.

The fact that the checkerboard pattern has squares of equal size, 38 mm on a side,

means it can be used as a measuring grid. Table 4.1 lists the results along with the

difference between the measured “true” and projection “estimated” camera coordi-

nates for the points. The results show that the differences were all within 5 mm,

corresponding to less than 5% of the “true” distance. Based on this, the backward

projection of the points is judged to be adequately accurate.

Figure 4.1. Checkerboard pattern perpendicular to optical axis
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Table 4.1. Checkerboard perpendicular to optical axis test

Point Pixels
Camera coordinates (mm)

Difference (mm)
Measured Projected

“truth” “estimated”

1
u 954 XC -114 -119 5

v 612 YC 0 0 0

2
u 1171 XC 0 -0 0

v 904 YC -152 -149 3

3
u 952 XC -114 -119 5

v 399 YC 114 113 1

4
u 1462 XC 152 150 2

v 828 YC -114 -111 3

4.1.2 Checkerboard pattern oblique to optical axis. The next step was

test backward projection when the surface is not perpendicular to the optical axis.

For this the camera was set at a -45◦ angle of elevation, pointed at a table with a

checkerboard pattern. The ZC values for each of the points marked on the pattern

would be different since the checkerboard pattern is not perpendicular to the optical

axis. The coordinates of the points were measured using measuring tape in Boom

coordinates and then rotated to camera coordinates using Equations 3.4 and 3.6,

where the elc = -45◦ and the azc = 0◦.

Similar to the previous test, four target points were selected and manually

marked on the checkerboard, to be projected from the image. Figure 4.2 shows the

image of the pattern, by the camera in this test, with the results being plotted in

Table 4.2. The difference between the measured and calculated camera coordinates

for the points are again fairly small with the largest being about 8mm which is about

7% of the measured “truth” distance.

For both cases of perpendicular and obliques checkerboard patterns, the dif-

ference calculated were relatively low. Some of that error can also be chalked up to
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Figure 4.2. Checkerboard pattern oblique to optical axis

human error in the physical measurements as a measuring tape was used. However,

the values show that this method is at least viable in projecting the pixels out to

their camera coordinates at an acceptable level of accuracy.

4.2 Camera-lidar test: backward projecting boxes on floor

The next test projects each pixel in the image out instead of just one. The

sensors were assembled in the configuration of Setup 1, as explained in Appendix D.

The camera was calibrated as described in Section 3.1 and camera parameters saved.

Since the camera parameters don’t change, the same parameters obtained can be used

with all future data from a given camera. Two cardboard boxes were placed on the

floor. The white paper taped to the floor between the boxes has no purpose and can

be ignored.

An image was taken with the camera, shown in Figure 4.3(a). Using the dis-

tortion coefficients and the built-in distortion removal function in Matlab as explained

in Section 3.2, the image was undistorted to obtain image shown in Figure 4.3(b).
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Table 4.2. Checkerboard oblique to optical axis test

Point Pixels
Camera coordinates (mm)

Difference (mm)
Measured Projected

“truth” “estimated”

1
u 1119 XC -78 -78 0

v 712 YC 0 -3 3

2
u 1303 XC 0 4 4

v 538 YC -81 -87 6

3
u 1561 XC 114 122 8

v 670 YC -27 -22 5

4
u 993 XC -114 -122 8

v 924 YC 80 83 3

Lidar data are collected at the same time as the camera image. The lidar

point cloud was subsequently translated and rotated to the camera coordinate frame,

producing the point cloud plot shown in Figure 4.4(a). The axes are the camera

coordinates in meters and the blue dots are lidar return points. They reason they

look like lines is because the lidar scans its surroundings at different vertical angles, so

each line represents a lidar laser sweep. The area sensed by the lidar, as shown through

the point cloud, includes not only the two boxes seen, at about where ZC = 2m and

around where XC = 0, but also the surrounding objects such as a shelf in the positive

ẑC and negative x̂C quadrant, chairs and desk in the positive ẑC and positive x̂C

quadrant, and even part of the ceiling seen in the negative ẑC direction. The point

cloud was then cropped to the FOV of the camera as shown in Figure 4.4(b). Here

the point cloud can only see the two boxes in the middle, with part of the shelf on

the left and part of the chairs and desk on the right side. One thing to note is the

blank pointless area behind the boxes. This is because the lidar can see the front of

the boxes but has no information of the region behind it.

This lidar point cloud was then overlaid onto the camera image. As explained
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(a) Distorted image with boxes

(b) Undistorted image with boxes

Figure 4.3. Image for lab test with boxes

in Section 3.5, the standard forward projection was performed to overlay the point

cloud in Figure 4.4(b) onto the camera image 4.3(b). The results can be seen in Figure

4.5(a). The image from the camera is plotted along its pixel coordinates on the axes,

which is overlaid with the colored points of the lidar point cloud. The colorbar gives

information of the ZC value of the lidar points in meters.

Examining the lidar points on top of the larger box, a problem can be identified

immediately. Lidar points from behind the box (orange) are overlaid on top of the

box. The physical points in space associated with those lidar returns are behind the



53

(a) lidar point cloud

(b) Cropped lidar point cloud

Figure 4.4. Lidar point cloud for lab test with boxes
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box but the reason for their visibility is because of the sensors’ placement. The lidar

can see objects from a different perspective than the camera, and so when translating

the origin of the point cloud, the features visible to one sensor may not be visible to

the other. This results in either blank spaces or, as seen here, overlapping of lidar

points onto features. This is affected more by how high the protrusion is from the

ground and how close to the sensors its located. Considering the lake surface, this

was not considered a major problem as the lake surface is pretty flat with barely any

protrusions high enough or close enough to cause this problem.

The lidar points in Figure 4.5(a) also do not align well with the features in

the image. The reasoning for this was discussed more in Section 3.5. The alternative

ratio method was then devised to approximate the forward projection. The results of

the ratio method can be seen in Figure 4.5(b), where the lidar points and image align

much better. Therefore, the ratio method was used for future data sets, including

the field data campaigns, instead of the forward projection.

The lidar points in the image plane do not cover every pixel as can be seen

in Figure 4.5(b) and thus, were interpolated to cover the image, as seen in Figure

4.6. This figure is similar to the image overlaid with the lidar point cloud, where

the axes are the pixels in the u and v directions. The colorbar shows the ZC value

for the interpolated points in meters. These points now cover majority of the image

except for one corner in the top left and the bottom which should go down to 1440

pixels according to the image size which the interpolation was performed to. The

reason is that it would need to extrapolate the data in those regions due to lack of

lidar point cloud coverage there. But due to bad extrapolation results which were very

inaccurate, the extrapolation was not performed. These sections will be automatically

omitted when forward projecting the pixels. Another detail to notice is the top of

the larger box on the right, which shows two sets of points, the purple ones correctly
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(a) Lidar overlay using forward projection

(b) Lidar overlay using ratio method

Figure 4.5. Lab test for projecting lidar point cloud onto image plane
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showing the top of the box but also the orange ones which are actually from the floor

behind the box. The only reason these are visible because the lidar can view those

parts but not the camera, therefore once the lidar points are translated to the camera

origin, the points behind the object overlap with the points in the front. Those

orange points should be removed leaving only the purple points before performing

the interpolation however since the lake surface, which is the actual objective of this

project, does not have any major features protruding out high enough to cause this,

it was not considered a major problem moving forward. It is something to consider

for future work, in terms of improving the process.

Figure 4.6. Interpolation of the lidar points in the image plane

With the ZC values assigned to the pixels, the backward projection was per-

formed on the image, one pixel at a time. The camera coordinates for each pixel were

obtained which allowed a pixel point cloud to be generated with each pixel plotted
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at its corresponding coordinates. This is seen in Figure 4.7, in which the pixel point

cloud is plotted in Boom coordinates. The boxes were successfully reconstructed

alongside some of the surrounding objects such as the chairs and shelf.

There is some warping, with the reconstruction not being as smooth as the

actual surfaces, for example the jagged edges of the boxes. This can be attributed

to the interpolation not having enough points to interpolate between. The edges of

the boxes which had no visual information had their pixels smudged as can be seen

between the box on the right and the chair behind it, as the interpolation just assumes

the pixels flow from one location to the other. Its happening because there’s gap in

the lidar point cloud between the box and the chair, seem as the abrupt change in the

ZC value, and so it’s interpolating across those, from orange to blue. In the future,

there may need to be a requirement to check the difference between adjacent pixel

ZC values before interpolating. Barring these shortcomings the reconstruction does

a good job of recreating the environment.

Figure 4.7. Reconstructed environment with boxes
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CHAPTER 5

RECONSTRUCTING THE LAKE SURFACE WITH ICE CONDITIONS

With the lab tests demonstrating that the method works, it was then per-

formed on the actual GNSS-R data. For the GNSS-R project the hardware was

driven to a location next to Lake Michigan in Chicago. The sensor suite was assem-

bled to face the lake surface and then data was collected for a couple of hours. The

hardware was then packed and taken back to the lab, where all the collected data was

processed. Each visit to the lakefront was designated as a “data campaign”, of which

there have been many over the course of this project. These data campaigns were

carried out to obtain data for different lake surface conditions, like ice and water, as

well as after any changes were made to the hardware setup. More details as to the

locations, dates and hardware setups of these campaigns can be found in Appendix

E.

The crux of the GNSS-R project is to be able to differentiate between water

and ice surface conditions using the GPS signals. Therefore to that point, data must

be collected for both situations and ideally when both are present at the same time.

For the 3D reconstruction side of the project, the ice conditions were the best scenario

to perform the backward projection method. The lidar used would have good strong

returns which mean a more accurate point cloud of the surface and its features. This

would provide good data for the backward projection of the camera feed.

5.1 Backward projection of lake surface with ice conditions

Data campaign 7 was one of the field tests for which the Lake Michigan surface

was frozen over. Figure 5.1 shows the sensor suite setup at the edge of a dock,

facing the frozen lake surface. This test provides a good example to demonstrate the
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reconstruction process for ice surface conditions. One other reason this particular

test is chosen as an example is that there is a large ice formation next to the dock in

view of the camera and scanned by the lidar, which makes it a feature visible in the

reconstruction process.

Figure 5.1. The hardware setup at the dock for Data campaign 7. Photo credit:
David Stuart

Figure 5.2 shows an undistorted image from the field test. The surface of the

lake can be seen as being frozen over with snow covering parts of it. There is also a

large ice buildup seen at the bottom of the image, which is next to the dock’s edge.

Figure 5.2. Camera image of ice surface conditions from Data campaign 7

The data was collected at the 31st street beach northern dock. A Google map
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of the location is shown in Figure 5.3, which is overlaid with the full lidar point cloud

(all yellow and red points) with the origin being the camera, indicated as the black

cross. The points in yellow are the lidar returns outside the FOV of the camera and

the ones in red are those in the FOV. The lidar point cloud was rotated to the Boom

coordinate system. It was resized and rotated on top of the Google maps image by

hand, overlaying the features in the image with the points in the point cloud. The

adjustments necessary to rotate the point cloud in order for the image features to

coincide with the lidar points, such as the edge of the docks, the trees and the steps

along the shore, could be due to the inaccuracy in measurements of the rotation

angles. This figure then shows that the coverage of the lidar across the water surface

is wide. However, the camera has a limited FOV so the lidar point cloud was cropped

to the part of the point cloud shown in red. The cropped lidar point cloud is shown

separately in camera coordinates in Figure 5.4.

Figure 5.3. Lidar point cloud overlaid with Google map location of Data campaign 7

This cropped lidar point cloud was then projected on the image as shown in
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Figure 5.4. Cropped lidar point cloud in camera coordinates for Data campaign 7

Figure 5.5, using the alternative ratio method. The colorbar shows the lidar points

ZC values in meters. The features in the image seem to match well with the point

cloud. It is not a perfect match but that is to be expected because the projection

onto the image plane is making an approximation alongside other sources of error.

The overlaid lidar point cloud was then interpolated to cover the image to

allow for backward projection of all the pixels. The image was then reconstructed

and can be seen in Figure 5.6. The plot was rotated to a perspective that emphasizes

the protruding ice feature. This shows that this reconstruction method works well on

full ice surface conditions.
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Figure 5.5. Lidar point cloud overlaid onto camera image for Data campaign 7

Figure 5.6. Reconstructed lake surface with ice conditions from Data campaign 7
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CHAPTER 6

RECONSTRUCTING THE LAKE SURFACE WITH WATER CONDITIONS

As previously stated in Chapter 5, the differentiation between ice and water is

the main goal of the GNSS-R project. When the lake is frozen over, the lidar returns

are very strong and very consistent. This provides good data with which to perform

the backward projection and reconstruct the lake surface. Having good lidar data

from only ice conditions is not enough. Backward projection is required for surface

water conditions as well. However, the lidar returns from water are rare.

Data campaign 5 was one of the field tests for which the Lake Michigan surface

was completely water, with no surface ice. This test provides a good data set with

which to develop a solution for the problem of backward projection with limited lidar

data. Details of campaign 5 are provided in Appendix E. The hardware setup was

similar to the field test for ice conditions, with a single camera and lidar (Setup 1

as explained in Appendix D). In this chapter, I present an alternative method for

estimating the Zc coordinate needed for backward projection from the lidar when the

lidar point cloud data are sparse.

6.1 Backward projection of lake surface with water conditions

Data campaign 5 was conducted at the northern dock of Chicago’s 31st Street

beach. This field test was performed during the summer when the lake surface was

completely devoid of any ice, thus providing surface water conditions. The sensor

suite can be seen set up on the edge of the dock, pointing towards the lake, in Figure

6.1, with downtown Chicago visible in the background. The lake can be seen here to

be completely unfrozen water.
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Figure 6.1. The hardware setup at the dock for Data campaign 5. Photo credit:
Houshine Sabbagh Zadeh

The camera collected data alongside other sensors for a couple hours. Figure

6.2 shows an undistorted image taken by the camera at a single timestamp. The

surface of the lake in view can clearly be seen to be completely water.

Figure 6.2. Camera image of water surface conditions from data campaign 5

While the camera provides good data, the lidar returns off the water are sparse

and very low intensity. This can be seen in Figure 6.3, in which one frame of the full

lidar point cloud, in Boom coordinates, is overlaid on top of a Google map of the test

location. It is the same 31st Street beach northern dock as Data campaign 7 in the
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previous chapter. The yellow points are the lidar returns off objects not in the FOV

of the camera, with the camera location indicated by a black cross. This figure was

created by resizing and rotating the point cloud plot on top of the Google Maps image

manually, overlaying the features in the image with the points in the point cloud. It

provides a good visual reference to identify points from which the lidar returns are

available. What is important to note here is that, compared to Figure 5.3, there are

no red points. That’s because for this instant there are no lidar points, in the FOV of

the camera, from the water surface. There were occasional returns from the surface

from time to time, but never enough points at any given timestamp to be able to

perform the backward projection.

Figure 6.3. Lidar point cloud overlaid with Google map location of Data campaign 5

6.1.1 Generating a pseudo-lidar point cloud. Each frame, comprising one

complete 360◦ scan, from the lidar point cloud did not have enough points. However,

occasionally during the complete 20-minute data campaign there would be a return
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picked up from the water surface. Therefore, to estimate the water surface, all the

returns obtained from the water over the course of the test were aggregated. Figure 6.4

shows all the returns plotted together in a single plot, in camera coordinates. These

points were rotated to the Boom coordinate frame, where the mean û coordinate of

the points over the entire time and camera FOV, was determined.

Figure 6.4. All lidar returns from water surface over the course of the entire test,
plotted in camera coordinates

The surface of the water is then estimated to be at this mean level, and so

a grid of points is plotted in Boom coordinates with this û coordinate. The grid

is generated with points stretching out beyond what is visible by the camera, as it

will be later cropped to the FOV. These points are dubbed ”pseudo” lidar points

because they will be used as though they are lidar returns from the water surface
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for the purposes of the backward projection. The pseudo-lidar point cloud can be

seen in Figure 6.5 from two different views, in the Boom coordinates. The actual

accumulated lidar returns from the water are plotted in blue, while the pseudo lidar

points generated at the mean are plotted in black. Figure 6.5(b) provides a side view

of the points plotted. It is interesting to note how spread out the actual lidar returns

from the surface are. Likely this is due to waves on the surface. The reflection points

above -1.5 m are unlikely to be water surface but instead stray particles in the air

reflecting lidar energy randomly at different moments during the data campaign. For

this work the outlier stray points were used in calculating the mean value. However,

for future work, they should be removed.

6.1.2 Performing backward projection using the pseudo-lidar point cloud.

The pseudo-lidar point cloud is then substituted into the backward projection method,

to be used instead of the actual lidar point cloud. The pseudo point cloud is rotated

to the camera coordinate system, then cropped to the FOV of the camera, as with

the method used for the actual lidar points. Figure 6.6 shows the pseudo-lidar point

cloud plotted in camera coordinates and cropped to remove the points outside the

camera FOV. The points in black are the pseudo-lidar points. The blue points are

the actual lidar returns plotted for reference.

This pseudo-lidar point cloud is then projected onto the camera image, shown

in Figure 6.7, using the alternative ratio method. The image is in pixel coordinates

with the colorbar showing the ZC values of the pseudo lidar points.

The rest of the process remains unchanged. The overlaid pseudo-lidar points

don’t cover the entire image and so are interpolated over the resolution of the image.

Each pixel is then backward projected using its pixel coordinates and corresponding

ZC value. The lake surface is thus reconstructed in 3D coordinates as shown in

Figure 6.8, in Boom coordinates. Note that while the camera image reflects sunlight
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(a)

(b)

Figure 6.5. Pseudo-lidar point cloud (black) generated at the estimated water level
based on the mean u coordinate of the time-aggregated lidar point cloud (blue),
plotted in Boom coordinates.
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Figure 6.6. Cropped pseudo lidar point cloud (black) and measured lidar point cloud
(blue) in camera coordinates for data campaign 5

at certain points, indicating variation in u coordinate, all camera pixels are assigned

the same mean u value over the FOV and over time.
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Figure 6.7. Pseudo-lidar point cloud overlaid onto camera image for data campaign
5. The ZC values on the colorbar are in meters

Figure 6.8. Reconstructed lake surface with surface water conditions from Data cam-
paign 5
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CHAPTER 7

RECONSTRUCTING THE LAKE SURFACE WITH MIXED ICE AND WATER
CONDITIONS

The backward projection algorithm developed works for fully-ice surface con-

ditions as explained in Chapter 5. For water surface conditions some additional

post-processing must be performed to be able to backward project the camera image

of the lake surface as explained in Chapter 6. Having performed the backward pro-

jection for entirely ice or entirely water surface conditions, the final step is to gather

and then analyze data from a mixed surface condition in which both ice and water

surface conditions are present.

It was also important to have data from mixed conditions as the goal of this

GNSS-R project is to differentiate between ice and water using GPS reflected signals.

The specular point of those reflected signals moves across the lake surface as the GPS

satellites move across the sky. To have both ice and water in the same data campaign

presents an ideal opportunity to detect GPS reflections when one such specular point

moves over a boundary between ice and water. This can be visually confirmed from

the reconstructed lake surface and further investigated though GPS signal processing.

Change in certain signal characteristics such as surface reflectivity will be identified

by the lake surface conditions change and then be used as metrics to distinguish

between the types of surface conditions (beyond the scope of this thesis).

This chapter shows results of backward projection of camera images for mixed

ice-and-water surface conditions. The hardware setup is changed from a single camera

to triple camera setup, designated as Setup 2, further explained in Appendix D. Data

from campaign 10, whose details are summarized in Appendix E are used in this
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demonstration.

7.1 Changing to a three camera setup

As previously seen in Figure 5.3, the camera FOV covers only a small portion

of the lake surface. Taking the lidar point cloud from data campaign 7 as a reference,

the red points are the only lidar returns from the lake surface that are visible to the

camera. A large number of the surface lidar returns do not have corresponding visual

images from a camera that can be reconstructed. In other words the lidar data and

this backward projection method are underutilized given the domain over which GPS

specular points may lie. Thus, we increased the camera coverage of the lake for all

tests after Data campaign 9.

Two more cameras are added to the setup to achieve wider lake surface imaging

coverage. Two new security CCTV cameras similar to the old camera are used. More

information on the specifications can be found in Appendix A. Not only are these

cameras inexpensive, their similarity to the old camera makes them easier to integrate

into the existing hardware.

The processing involved with backward projecting the lake surface does not

change. The data from each camera is backward projected separately using the lidar

to produce three different lake surface reconstructions. Merging them to produce one

singular lake surface map is beyond the scope of this work, and will be the subject of

future study.

7.2 Backward projection of lake surface with mixed conditions

To test out the new hardware setup as well as obtain sensor data from mixed

ice and water surface conditions, data campaigns 10 and 11 were carried out. Data

campaign 10 is used in this work to show the results of these changes. Details of this

test are provided in Appendix E. This test was performed at the 31st Street Beach
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harbour. Figure 7.1 shows the GNSS-R sensor suite setup facing the lake surface.

The individual ship docks are seen in the background. The surface of the lake can

be seen to possess both ice (to the right) and water (to the left) regions, where the

sensor suite is setup pointing roughly in between the two.

Figure 7.1. The hardware setup at the dock for Data campaign 10. Photo credit:
David Stuart

Figure 7.2 shows each of the camera images of the lake surface. Camera 1 is

the same camera used in the previous tests. Camera 2 and Camera 3 are the new

cameras each attached with an azimuth angle with respect to the b̂ axis, also known

as the forward boom direction. This allows the cameras to cover the lake surface

to the left and right of the original camera. The laptop used to run the sensor and

collect data can be seen in the foreground.

Figure 7.3 shows the lidar point cloud plotted in Boom coordinates, overlaid

onto the Google maps location for Data campaign 10. The black cross, the origin of
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(a) Camera 1

(b) Camera 2

(c) Camera 3

Figure 7.2. Camera images of the mixed ice and water surface conditions from Data
campaign 10
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the plot, shows the location of camera 1. The yellow and red points plotted are all

lidar returns, with yellow being those not in FOV of the cameras and the red being

the ones in FOV of the cameras. Compared to the lidar point clouds from previous

tests it can be seen that the 3 cameras allow for wider surface coverage.

The lidar point cloud also shows the same mixed surface conditions as seen in

the camera images. The lake surface in front of and to the immediate right of the

sensor setup is frozen, providing abundant lidar returns. The lake surface to the left

is water and so there are almost no returns.

Figure 7.3. Lidar point cloud overlaid with Google map location of Data campaign
10

The lidar point cloud is cropped to the FOV of each camera separately and

overlaid onto its respective image, using the alternative ratio method. Using the

Camera-Lidar Setup 2 angles described in Appendix D, the lidar points did not line up

well with their counterparts in camera image 2. This might be due to the orientation

not being set perfectly, and there being error in the measured angles. Thus, the
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azimuth and elevation angles were changed through trial and error until the features

in both matched up. For camera 2 the new angles were set as azC = −24◦ and

elC = −39◦. The angles for camera 1 and 3 were not altered. The image-lidar

overlays can be seen in Figure 7.4, Figure 7.5 and Figure 7.6. The plots are in pixel

coordinates with the colorbars indicating the lidar points’ ZC values in meters.

The lidar points can visibly be seen to return from the ice portions of the lake

surface. The lidar points follow the ice features of the surface quite accurately. The

surface ice has many reflections, but there are portions in the ice devoid of any lidar

returns due to the presence of water. There are areas of the images where the lidar

either does not scan, such as the top portions of camera 2 and camera 3 images, or

areas where the lidar does scan but there are no returns from the surface, such as the

left most portion of camera 2.

Figure 7.4. Lidar point cloud overlaid onto Camera 1 image for Data campaign 10

A pseudo-lidar point cloud is generated to fill in those regions. With mixed

surface conditions it is much easier to generate the pseudo-lidar point cloud. The ice

regions are simply used to obtain a mean value for the lake water level, i.e. a mean
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Figure 7.5. Lidar point cloud overlaid onto Camera 2 image for Data campaign 10

Figure 7.6. Lidar point cloud overlaid onto Camera 3 image for Data campaign 10
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û value. The actual lidar returns from the ice, visible to each respective camera are

used. Unlike the case with only water surface conditions in Chapter 6, if there are

ice conditions in view of the cameras, the lidar points do not need to be aggregated

over all time as each frame has sufficient returns to be used in calculating the mean

surface level. A grid of pseudo-lidar points is created in the Boom coordinates that

span a length of -20 to 20 m in the t̂ direction, 0 to 19 m in the b̂ direction and at the

mean water level in the û axis. This mean weater level is calulated using the actual

lidar points visible to each camera, so it generates one mean height per camera. This

size of the grid is large so as to cover the FOV of all three of the cameras. This grid

of pseudo-lidar points is rotated to the camera coordinate frame and then overlaid

on to the image, alongside the actual lidar points, as previously explained in Section

3.5. Any pseudo-lidar points that are too close in proximity to actual lidar points in

the image, i.e. within a 90-pixel radius, are removed. Thus, the pseudo-lidar points

only cover the regions where there are either no lidar returns or no lidar coverage.

The camera images have the pseudo-lidar points added to their camera-lidar

overlay, as shown in Figure 7.7, Figure 7.8 and Figure 7.9. The pseudo-lidar grid

can be seen to cover the regions where the actual lidar returns were missing, when

compared to Figure 7.4, Figure 7.5 and Figure 7.6 which show only the actual lidar

points. The color of the actual lidar points is different from the previous figures

because of the change in the maximum and minimum values in the colorbar, based

on the addition of the pseudo lidar points.

The next steps are the same as in the previous chapters: all the lidar points

are interpolated over each respective camera image, to obtain the necessary ZC values

for all pixel coordinates. Then the image pixels are all backward projected to produce

the reconstructed surface. Since each camera is treated separately, there are three dif-

ferent lake surface maps generated. Figure 7.10, Figure 7.11 and Figure 7.12 show the
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Figure 7.7. True lidar points and pseudo-lidar points overlaid onto Camera 1 image
for Data campaign 10

Figure 7.8. True lidar points and pseudo-lidar points overlaid onto Camera 2 image
for Data campaign 10
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Figure 7.9. True lidar points and pseudo-lidar points overlaid onto Camera 3 image
for Data campaign 10

reconstructed lake surfaces from each individual camera and are plotted in Boom co-

ordinates. The water and ice surfaces have both been successfully reconstructed. The

addition of the two new cameras allow more of the lake surface to be reconstructed.

The ice and water surfaces can be visually identified as required by this project. This

demonstrates the algorithm works in these mixed surface conditions. For future work

the reconstructed surfaces would need to be stitched together to produce a singular

map of the lake surface with GPS specular reflection points mapped on top.
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Figure 7.10. Reconstructed lake surface with mixed ice and water conditions for Data
campaign 10 - Camera 1
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Figure 7.11. Reconstructed lake surface with mixed ice and water conditions for Data
campaign 10 - Camera 2
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Figure 7.12. Reconstructed lake surface with mixed ice and water conditions for Data
campaign 10 - Camera 3
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CHAPTER 8

CONCLUSION

8.1 Summary

This work provided the basis to reconstruct a lake surface using a camera-lidar

setup. The algorithm was developed based on backward projection of the camera

image which required depth information provided by the lidar. The lidar point cloud

was overlaid on the image and subsequently interpolated over the entire image. The

image was then projected out into 3D coordinates to recreate the surface.

Since this method relied on lidar returns, which was good in the case of ice

surface conditions, it was a challenge when there were little to no returns, as in the

case of water surface conditions. This required aggregating the sparse returns of the

lidar over time and space and using them to calculate mean surface height relative

to the sensors. This mean height was used in backward projecting all pixels of the

image for the water conditions.

The tests were performed for only ice surface conditions, only water surface

conditions and mixed ice-water surface conditions. The results for all these cases were

shown. The hardware setup of the experiments also changed from a single camera

and single lidar to three cameras and single lidar, in an effort to expand the image

field-of-view of the lake surface.

The results in this thesis show that this method can be used to reconstruct the

lake surface for variable conditions, be it ice or water. The lidar turns out to be a good

sensor to identify water from ice, simply from the presence or absence of a returned

intensity point. There are almost no returns from regions with water, unless the water
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is choppy. The actual lidar points overlaid onto the camera images help visually locate

the regions with water, especially if it was not immediately recognizable in the image.

Camera-lidar sensor fusion is a good way to reconstruct the surface assuming

there are consistent lidar returns from the surface. As shown by the water surface test,

it may sometimes be necessary to then estimate the water level; here we used pseudo-

lidar points. This problem may be mitigated through other means of obtaining the

ZC value in the future, such as a stereo camera setup.

8.2 Future work

For future work improvements can be made to improve the accuracy of the

results. The various sources of error are the obvious target for this:

• Calibrating the camera accurately. More care can be taken when perform-

ing the calibration process to obtain more accurate camera parameters. This

can be done by taking more checkerboard pattern images, having sharper im-

ages, making sure the pattern covers majority of the image and others as stated

in the documentation for the camera calibration app.

• Identify error source for forward projection. To avoid using an approxi-

mation the error in the forward projection must be eliminated. Since the exact

reason is speculative at this point, it should be investigated more.

• Translation vector to change lidar point cloud origin. The relative

position vector used to translate the lidar point cloud from the lidar origin

L0 to the camera origin C0 can be measured more accurately, perhaps using a

device with more accuracy than a measuring tape. The lidar itself might be

reoriented temporarily for distance-measuring for this calibration step.

• Angles measured more accurately. For tests the angles of the sensors must
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be measured more accurately. During the data campaigns, after setting up the

sensors the angles were set using a digital angle finder. There is likely human

error in the measurement due to the difficulty in measuring it when set up

at the test site, especially during the cold winter tests. There were also tests

where the dock was frozen over with ice and uneven, but during the processing

of data, the assumption was made that the sensor suite was level because there

was no measurement made of the tilt of the setup on this uneven surface. These

measurements need to be made for future tests and be taken with a measuring

device allowing for more accurate measurements.

Future work for the processing of the data include:

• Improve interpolation. Write own algorithm for interpolation instead of

using built-in function, to more accurately interpolate the lidar data and cover

the entire image.

• Improve lidar point cloud translation. As talked about in Section 4.2 the

overlaid point cloud can sometimes have points from behind an object laid on

top of points in front of the object. This must be corrected for and the points

that should not be visible to the camera due to object blocking them, have to

be removed.

• Improving the water condition surface estimation. A better method to

estimate the mean surface from the sparse lidar returns off the water could be

made. Perhaps instead of a standard average of the points, a weighted average

could be taken or points too far out could be removed entirely.

In the longer term, the data sets collected may be used for new methods

including
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• Use stereo camera setup. Due to lack of lidar returns from the water surface,

use a stereo camera setup to obtain depth information the perform the backward

projection. This will not be affected by the presence of water or ice. The

lidar can remain as an additional sensor which can be used to identify the ice

and water from its returns or lack thereof respectively. This configuration will

require the cameras to be placed sufficiently far apart to be resolve surface

variations.

• Create a timelapse of the surface. Multiple frames from the data must

be reconstructed to produce a time lapse of the surface while plotting GPS

specular points on top. The points would move across the surface as satellites

move across the sky. Time stamps could be identified for when the points pass

over boundaries of ice and water to be used for the GPS processing.

• Merging data from 3 camera setup. The backward projection of the surface

from each of the three cameras must be combined to create a single map of the

entire surface in 3D coordinates.

This work, although currently meant to validate the GNSS-R signal analysis,

could be used by itself for applications requiring water and ice differentiation. This

could be the case for autonomous vehicles that need to obtain road surface conditions

or even geographic mapping of large bodies of water. This work simply sets the

foundation. The future possibilities are endless.
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APPENDIX A

CAMERA SPECIFICATIONS
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The cameras used for this were were IP cameras generally used for security

purposes. GW 5037 IP was the central camera in the setup, designated as Camera

1, shown in Figure A.1(a). The specifications as provided by the manufacturer of

this camera are provided in Table A.1 [23]. GW 5050 IP was the second model

used, shown in Figure A.1(b). Two of this model were added to the sensor setup,

designated as Camera 2 and Camera 3, to provide wider FOV coverage of the lake

surface. Specifications as provided by the manufacturer of this camera are provided

in Table A.2 [24].

(a) GW 5037 IP[25] (b) GW 5050 IP [24]

Figure A.1. Photos of the Cameras used for this work.
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Table A.1. GW 5037 IP Camera Specifications

Specification Description

color White

IP Rating IP66

Video Encoding H.264/H.265

Image Sensor 1/3” Progressive Scan CMOS

IP Camera Resolution 5 Megapixel

Video Bitrate 256Kbps 8192Kbps

Lens 3.6mm

Frame Rate 5MP @ 15FPS, 4MP @ 20FPS,

3MP @ 30FPS, 2MP @ 30FPS

Min Illumination 0.1Lux@(F1.2 AGC ON), 0 Lux With IR

IR Distance 75ft IR (18pcs 3rd Gen SMD LED 850nm)

Backlight Compensation BLC

Wide Dynamic Range Digital WDR

Elelctronic Shutter Speed Auto/Manual 1/60s 1/100,000s

Built-In Audio No

Two-way Audio No

Network Interface 10/100M PoE

Network Protocol DDNS, DHCP, DNS, FTP, HTTP, NTP,

ONVIF, P2P, RTSP, SMTP, TCP/IP,

uPnP, URL

Remote Software Danale

Current Consumption 6W

Dimension 2.59” X 2.59” X 6.77”

Power Supply Input 100 240V, 12V Optional
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Table A.2. GW 5050 IP Camera Specifications

Specification Description

Image sensor 1/2.8” 5MP IMX335 CMOS

Effective Pixels 2592(H) × 1944 (V)

Electronic Shutter AUTO, 1/25s 1/100000s

Min. Illumination 0.01Lux@F1.2(AGC ON), 0Lux IR on

Day/Night Auto/Color/(B/W)/Timing

WDR Digital WDR

White Balance Auto/Manual

AGC/BLC/HLC Support

DNR 2D/3D DNR

Other Features Multi-lines OSD, Motion Detection, Privacy Mask,

Mirror

Video Standard H.264/H.265

Video Resolution Main Stream: 15fps @ 5MP (2592×1944),

25fps @ 4MP/3MP, 30fps @ 1080P/720P

Sub Stream: D1/VGA(640×480)/360P/QVGA @ 30fps

Video Bitrates 32Kbps – 8Mbps, VBR/CBR

Audio Standard G.711-u/G.711-a

IR LED 20 pcs small SMD IR Leds

IR Distance 99ft-131ft

Focal Length 2.8-12mm varifocal lens

Optional Function POE, Audio, etc.

Zoom 4x Optical Zoom

Protocol HTTP/RTSP/FTP/SMTP/DHCP/NTP/NFS, etc.

P2P Yes

Web Access IE , Firefox (32bit esr), etc.

Media CMS, Android, IOS

ONVIF 2.6 compatible

Network Port 1-RJ45, 100Mbps, POE optional

Power Supply 12 VDC ± 10%

Power Consumption < 8 W

Operating Temperature -30◦C to +60◦C, 10%-90%RH

Resolution 5 Megapixel

Camera Style Bullet

Color White
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APPENDIX B

LIDAR SPECIFICATIONS
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The lidar used in this work was the VLP-16, also known as the ‘Puck.’ Figure

B.1 shows a photo of the sensor. It is a standard lidar model widely used for many

autonomous vehicle and drone applications. The specifications are summarized in

Table B.1 and Table B.2 [26]. Dimensions of the sensor are shown in Figure B.2.

Figure B.1. Photo of the VLP-16 Lidar used for this work [26]
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Figure B.2. Dimensions of the VLP-16 Lidar [26]
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Table B.1. VLP-16 ‘Puck’ LiDAR Specifications

Specification Description

Sensor:

Channels 16

Measurement Range 100 m

Range Accuracy Up to ±3 cm

Field of View (Vertical) +15.0◦ to -15.0◦ (30◦)

Angular Resolution (Vertical) 2.0◦

Field of View (Horizontal) 360◦

Angular Resolution (Horizontal) 0.1◦ – 0.4◦

Rotation Rate 5 Hz – 20 Hz

Web Server Integrated for Easy Monitoring and

Configuration

Laser:

Laser Product Classification Class 1 Eye-safe per IEC 60825-1:2007

& 2014

Wavelength 903 nm

Mechanical/Electrical/Operational:

Power Consumption 8 W

Operating Voltage 9 V – 18 V (with Interface Box and

Regulated Power Supply)

Weight Approx 830 g (without Cabling and

Interface Box)

Dimensions See Figure B.2

Environmental Protection IP67

Operating Temperature -10◦ C to +60◦ C

Storage Temperature -40◦ C to +105◦ C

(continued in Table B.2 on next page)
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Table B.2. VLP-16 ‘Puck’ LiDAR Specifications (continued)

Specification Description

Output:

3D Lidar Data Points Generated Single Return Mode:

Approx 300,000 points per second

Dual Return Mode:

Approx 600,000 points per second

Connection 100 Mbps Ethernet

UDP Packets Contain Time of Flight Distance Measurement

Calibrated Reflectivity Measurement

Rotation Angles

Synchronized Time Stamps

(µs resolution)

GPS $GPRMC and $GPGGA NMEA Sentences

from GPS Receiver (GPS not included)
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APPENDIX C

CALCULATING THE CAMERA FOV
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Cameras have a FOV from which they capture incoming light rays from the

environment. This FOV is dependent on the construction of the camera and its

lenses. This work had to remove the lens distortion from the captured images, thereby

changing the actual FOV of the new cropped images compared to the original images.

Thus, the FOV obtained in the camera specifications could not be used directly. The

steps involved to determine the FOV after distortion removal are as follows:

1. Mount a checkerboard pattern, with known dimensions of the squares, on a wall

or other vertical surface. Either tape it to the wall or make sure it is placed

vertically using a level.

2. Point the camera at the pattern, making sure it is pointed normal to the plane

of the pattern.

3. Adjust the distance between the camera and the pattern until the pattern covers

the entire image generated by the camera.

4. Note down the perpendicular distance from the pattern to the camera and save

the image from the camera.

5. Undistort the generated image as explained in Section 3.2.

6. Since the size of the pattern boxes is known, use the visible checkerboard squares

to determine the length of the pattern visible both horizontally and vertically

in the undistorted image.

7. Use Equation C.1 to calculate the horizontal FOV (HFOV) in degrees, where

lH is the length of the checkerboard pattern visible horizontally in mm and dC

is the perpendicular distance from the pattern to the camera in mm.

HFOV = 2 tan−1
lH/2

dC
(C.1)
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8. Use Equation C.2 to calculate the Vertical FOV (VFOV) in degrees, where lV

is the length of the checkerboard pattern visible vertically in mm and dC is the

perpendicular distance from the pattern to the camera in mm.

VFOV = 2 tan−1
lV /2

dC
(C.2)

Figure C.1 shows two of the cameras used in this work facing a checkerboard

pattern, in the process of determining their FOV. The checkerboard pattern is taped

to a sheet of cardboard which is propped up to be vertical using a spirit level, seen

on the top of the cardboard. The cameras are placed onto a horizontal table.
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Figure C.1. Cameras set in front of a checkerboard pattern to calculate FOV
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APPENDIX D

SENSOR SETUP
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The setup of the camera and lidar sensors changed slightly throughout the

project. For the cases shown in this documentation, there were primarily two setups.

Setup 1 involved one camera and one lidar, as seen in Figure D.1(a). The arrange-

ment of the sensors in this setup is explained through the angles listed in Table D.1.

Setup 2 was designed to increase the camera coverage of the lake and involved three

cameras and one lidar, as shown in Figure D.1(b). The data from each camera was

independently forward projected with the lidar data to produce its own reconstruc-

tion of the environment. The arrangement of the sensors for Setup 2 is listed in Table

D.1.

The angles listed here are explained further along with the corresponding co-

ordinate axes in Section 3.3. For the lidar, elL is the Elevation angle of the lidar ŷL

axis with respect to the Boom b̂ axis and lidar azL is the Azimuth angle of the ŷL

axis with respect to the Boom b̂ axis. For the cameras, elC is the Elevation angle of

the camera ẑC axis with respect to the Boom b̂ axis and azC is the Azimuth angle of

the camera ẑC axis with respect to the Boom b̂ axis. All angles are in degrees.

When setting up the hardware the camera and lidar mounts have different

methods of setting the angles. The lidar mount has a few possible angled positions

which can be fixed by sliding a locking pin in.The angle of the mount is set before

attaching the lidar onto it and the angle will not change unless the locking pin is

removed again. The camera mounts, on the other hand, have a swivel joint with

indicator clicks every 9◦. The camera is rotated to the correct orientation and is then

left in that position. Since the camera mounts can have their angles altered during

the setup process at the test site through vibrations or accidental force, they are all

checked again before beginning data collection using a digital angle finder.
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(a) Setup 1 (b) Setup 2

Figure D.1. The different hardware setups for Lidar and Camera. Photo credit:
David Stuart

Table D.1. Camera-Lidar hardware Setup 1

Lidar Camera 1

Azimuth (deg) azL 0 azC 0

Elevation (deg) elL -45 elC -45

Misalignment (deg) δ 3.2

Table D.2. Camera-Lidar hardware Setup 2

Lidar Camera 1 Camera 2 Camera 3

Azimuth (deg) azL 0 azC 0 azC -25 azC 25

Elevation (deg) elL -45 elC -45 elC -36 elC -36

Misalignment (deg) δ 3.2 δ 0 δ 0
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APPENDIX E

DATA CAMPAIGNS
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Since the inception of this project many data campaigns have been performed

to collect sensor data. The following table highlights some of the details regarding

those data campaigns. The latitude and longitude position of the test locations was

extracted from Google Maps after identifying the setup location on the map. The lake

surface conditions were determined visually. Water surface conditions had free flowing

water with waves. Ice surface conditions had a frozen surface with no movement; in

some cases ice was also covered with snow. The mixed ice and water surface conditions

had water regions with patches of frozen ice floating on the surface.

For the camera-lidar hardware setup (last column of Table E.1) refer to Ap-

pendix D. It should be noted that for Test 1 East and 1 West, although both lidar

and camera were present, only the lidar was functional and collected data. Figure

E.1 shows the locations of these data campaigns marked in yellow crosses with labels

to indicate which data campaign tests took place.

Figure E.1. All Data campaign test locations

The main GNSS-R hardware was constant throughout the many data cam-
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Table E.1. Details of the GNSS-R Data campaigns

Camera-

Data lidar

Campaign Date Latitude Longitude Lake surface Setup

1 East Jan 23,2018 41.83978 N 87.60421 W Water 1

1 West Jan 23,2018 41.83893 N 87.60306 W Ice 1

2 Feb 22, 2018 41.83978 N 87.60421 W Water 1

3 Mar 2 2018 41.84066 N 87.60698 W Water 1

4 Mar 9 2018 41.84066 N 87.60698 W Water 1

5 Jul 5, 2018 41.84066 N 87.60698 W Water 1

6 Jan 27, 2019 41.83918 N 87.60457 W Water 1

7 Feb 1, 2019 41.84066 N 87.60701 W Ice 1

8 A Feb 19, 2019 41.83936 N 87.60444 W Ice 1

8 B Feb 19, 2019 41.84066 N 87.60701 W Ice 1

9 Jan 31, 2020 41.83946 N 87.60437 W Water 2

10 Feb 14, 2020 41.83835 N 87.60615 W Ice & Water 2

11 Feb 21, 2020 41.83798 N 87.60612 W Ice & Water 2

paigns. There had been changes such as the addition of cameras, changing GPS

gains and even changing some of the sensor angles. Figure E.2 shows an example

sensor suite setup for the data campaign number 7.
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Figure E.2. The full GNSS-R Sensor Suite. Photo credit: David Stuart
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